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Abstract

Background: Heart failure (HF) patients are at risk for structural brain changes due to cerebral hypoperfusion. Past
work shows obesity is linked with reduced cerebral blood flow and associated with brain atrophy in healthy
individuals, although its effects on the brain in HF are unclear. This study examined the association among body
mass index (BMI), cerebral perfusion, and brain volume in HF patients.

Results: Eighty HF patients underwent transcranial Doppler sonography to quantify cerebral blood flow velocity of
the middle cerebral artery (CBF-V of the MCA) and brain magnetic resonance imaging (MRI) to quantify total brain,
total and subcortical gray matter, white matter volume, and white matter hyperintensities. Body mass index (BMI)
operationalized weight status. Nearly 45% of HF patients exhibited a BMI consistent with obesity. Regression
analyses adjusting for medical variables, demographic characteristics, and CBF-V of the MCA, showed increased BMI
was associated with reduced white matter volume (p < .05). BMI also interacted with cerebral perfusion to impact
total gray matter volume, but this pattern did not emerge for any other MRI indices (p < 0.05).

Conclusions: Our findings suggest increased BMI negatively affects brain volume in HF, and higher BMI interacts
with cerebral perfusion to impact gray matter volume. The mechanisms for these findings remain unclear and likely
involve multiple physiological processes. Prospective studies are needed to elucidate the exact pattern and rates of
brain changes in obese HF persons.
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Background
Heart failure (HF) is associated with adverse medical
outcomes, including greater risk of mortality and rehos-
pitalization [1]. Past findings suggest that HF increases
risk for neurological disorders such as Alzheimer’s dis-
ease and vascular dementia [2,3]. However, structural
brain differences can be observed in HF patients com-
pared to age-matched controls prior to onset of these
conditions. The wide-spread differences include smaller
gray and white matter volumes, impaired axonal diffu-
sion characteristics and increased white matter hyperin-
tensities (WMH) [4-6].
Cerebral hypoperfusion and the resulting ischemia have

been proposed to be the most significant contributors to ad-
verse brain changes in patients with HF [5,7-9]. Supporting
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such mechanisms is past work showing that reduced cere-
bral blood flow is prevalent and linked with neurocognitive
consequences and structural brain damage in HF and other
cardiovascular disease populations [10-15]. Consistent with
this notion, the effects of common vascular risk factors
(e.g., hypertension, diabetes, sleep apnea) on neurocognitive
outcomes in HF are believed to stem from their negative
impact on cerebral perfusion [16-19].
Obesity affects up to 40% of HF patients, and has adverse

effects on brain volume in this population [20-22]. Indeed,
obesity has been suggested to be an independent risk factor
for structural brain changes. For example, among other-
wise healthy older adults, increased BMI is associated with
smaller whole brain and total gray matter volume [23], and
obesity has been independently linked with smaller brain
volume in patients with Alzheimer’s disease [24]. In
addition to specific pathophysiological mechanisms, obesity
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Table 1 Demographic, medical, and cognitive
characteristics of older adults with heart failure (N = 80)

Demographic characteristics

Age, mean (SD) years 68.23 (8.58)

Female (%) 35.0

Education, mean (SD) years 13.90 (2.76)

Medical characteristics

LVEF %, mean (SD) 42.99 (13.32)

NYHA Class (% II, III, IV) 87.5, 11.3, 1.3

Hypertension (% yes) 70.0

Diabetes (% yes) 27.5

Sleep apnea (% yes) 22.5

Myocardial infarction (% yes) 57.5

Depression (% yes) 18.8

MCA CBF-V, mean (SD) cm/s 43.00 (13.56)

Body mass index, mean (SD) kg/m2 29.89 (6.68)

NYHA New York Heart Association; LVEF Left Ventricular Ejection Fraction;
MCA CBF-V Cerebral Blood Velocity of the MCA.
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may affect brain volume in HF through augmentation of
other vascular risk factors via greater reductions in cerebral
blood flow. For instance, obesity is associated with reduced
cerebral perfusion in HF and the combination of these fac-
tors exacerbate cognitive impairment [20].
Despite these findings, no study to date has examined

the association among body mass index (BMI), cerebral
perfusion, and brain volume in persons with HF. The
purpose of the current study was to examine the inde-
pendent association between BMI and brain volume in
older adults with HF. We then sought to determine
whether elevated BMI and decreased cerebral perfusion
interact to exacerbate brain volume reductions in this
population.

Methods
Participants
This sample consisted of 80 persons with HF from an
ongoing study of neurocognitive outcomes in HF. Strict
inclusion/exclusion criteria were chosen for entry into
the study. Specifically, the participants were between the
ages of 50–85 years of age, native English speakers, and
had an established diagnosis of New York Heart Associ-
ation (NYHA) class II, III, or IV at the time of enroll-
ment. Exclusion criteria included history of significant
neurological disorder (e.g. dementia, stroke), head injury
with more than 10-minutes loss of consciousness, severe
psychiatric disorder (e.g. schizophrenia, bipolar dis-
order), history of substance use, and renal failure. Partic-
ipants for the current study were also excluded for any
contraindications to magnetic resonance imaging (MRI),
such as cardiac pacemaker. Participants averaged 68.23
(SD = 8.58) years of age, and 35.0% of them were
women. Medical record review revealed that the current
sample exhibited an average left ventricular ejection
fraction (LVEF) of 42.99 (SD = 13.32). See Table 1 for
sample demographic and medical characteristics.

Measures
Neuroimaging
Whole-brain, high-resolution 3D T1-weighted images
(Magnetization Prepared Rapid Gradient-Echo, MPRAGE)
were acquired on a Siemens Symphony 1.5Tesla scanner
for morphometry analysis. Twenty-six slices were acquired
in the sagittal plane with a 230 × 100 mm field of view.
The acquisition parameters were as follows: Echo time
(TE) = 17, repetition time (TR) = 360, acquisition matrix =
256 × 100, and slice thickness = 5 mm. Whole-brain T2
and FLAIR images were also acquired to quantify WMH.
For the T2-weighted images, twenty-one 5-mm thick
slices were acquired with a 230 × 100 mm field of view
with TR = 2910 and TE = 134. For the FLAIR images,
twenty-one 5-mm slices were acquired with TR = 8500,
TE = 115, and FOV= 220 × 75.
Morphometric analysis of brain structure was completed
with FreeSurfer Version 5.1 (http://surfer.nmr.mgh.har-
vard.edu). Detailed methodology for regional and total vol-
ume derivation has been described in detail previously
[25-27]. Briefly, FreeSurfer was used to preprocess images
(e.g. intensity normalization, skull stripping) then provide
an automated parcellation of cortical and subcortical
structures via an automated processing stream. FreeSurfer
performs parcellation by registering images to a probabil-
istic brain atlas, built from a manually labeled training set,
and uses this probabilistic atlas to assign a neuroanatom-
ical label to each voxel in an MRI volume. Total brain vol-
ume, total gray matter, subcortical gray matter, cortical
white matter volume, and intracranial volume measure-
ments are derived automatically.

Cerebral blood flow
Total white matter hyperintensities (WMH) volume was
derived by a three-step operator-driven protocol that has
been described in detail previously [28,29]. Briefly, in
Step 1, a threshold was applied to each FLAIR image to
label all voxels that fell within the intensity distribut-
ion of hyperintense signal. In Step 2, gross regions-of-
interest (ROI) were drawn manually to include WMH
but to exclude other regions (e.g., dermal fat) that have
similar intensity values. In Step 3, a new image is gener-
ated that contains the intersection of voxels labeled in
Step 1 and those labeled in Step 2. The resulting image
contains labeled voxels that are common in Step 1 and
Step 2. The number of resulting voxels is summed and
multiplied by voxel dimensions to derive a total volume
score. We have shown the validity and reliability of this
approach previously [28].
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Transcranial Doppler ultrasonography through an ex-
panded Stroke Prevention Trial in Sickle Cell Anemia
(STOP) protocol [30] was used to assess mean cerebral
blood flow velocity (CBF-V) of the Middle Cerebral Ar-
tery (MCA). The MCA irrigates the frontal, temporal,
and the parietal cerebrum. It is sensitive to changes in
cerebral blood flow and has also been suggested to be a
more reliable representation of CBF-V relative to other
TCD measured arteries (e.g., ACA, PCA) [31,32]. In
addition, relative to healthy controls persons with HF
have a significantly lower CBF-V in the MCA [15].

Demographic and medical characteristics
Participant demographic and medical characteristics
were ascertained through medical record review and
self-report. See Table 1.

Procedures
The Kent State University and Summa Health System
Institutional Review Boards approved the study proce-
dures and all participants provided written informed
consent prior to study enrollment. All study procedures
comply with the Declaration of Helsinki. For all partici-
pants, a medical chart review was performed and height
and weight were measured. HF patients then underwent
TCD and brain MRI.

Statistical analyses
A square root transformation was applied to WMH to
correct for a positively skewed distribution. Separate
hierarchical regression models were used to examine the
independent effects of BMI and CBF-V of the MCA on
structural brain indices (e.g., total brain, total gray mat-
ter, subcortical gray matter, cortical white matter vol-
ume, and WMH volume). However, to limit the number
of analyses and preserve power, for each volumetric
index, one regression model that included both CBF-V
of the MCA and BMI was performed to determine the
effects of each of these variables on the MRI variables.
Intracranial volume, as well as medical and demographic
characteristics was entered in block 1. They included
age, sex (1 =male; 0 = females), years of education, LVEF,
diagnostic history of hypertension, diabetes, sleep apnea,
myocardial infarction, and depression (1 = positive diag-
nostic history; 0 = negative diagnostic history). These
medical and demographic variables were included as co-
variates in light of their known influence on neurocogni-
tive outcomes in older adults with HF. CBF-V of the
MCA was then entered as a block 2 variable and the
continuous BMI variable was entered in block 3 to de-
termine the incremental predictive validity of BMI and
cerebral perfusion on brain volume in HF. Moderation
analyses using hierarchical regression models were con-
ducted to determine the synergistic effects of BMI and
cerebral perfusion on the same volumetric indices listed
above. Intracranial volume, BMI, and CBF-V of the
MCA were transformed to z-scores and individually en-
tered in block 1. The cross product of BMI and CBF-V
of the MCA was computed and entered in block 2.

Results
Descriptive statistics
The sample mean BMI was 29.89 (SD = 6.68). By com-
mon categorization, 25.0% of the participants fell within
the normal range (BMI = 18.5-24.9), 33.8% were over-
weight (BMI = 25 to 29.9) and 41.3% of the sample ex-
hibited a BMI consistent with obesity (BMI ≥ 30). BMI
groups did not differ in age, sex, education, LVEF,
NYHA class, and frequency of diagnostic history of dia-
betes, myocardial infarction, and depression. In contrast,
sleep apnea and hypertension were more common
among the obese persons than among overweight and
normal weight participants. See Table 2. Of note, bivari-
ate correlations showed that higher BMI was associated
with reduced CBF-V of the MCA (r(78) = −.22, p = .05).

The independent effects of BMI on brain volume
Models containing medical and demographic character-
istics were associated with total brain volume, total gray
matter volume, subcortical gray matter volume, cortical
white matter volume, and WMH (p < .05 for all). See
Table 3. After adjusting for medical and demographic
variables, decreased CBF-V of the MCA was associated
with increased WMH volume (β = −.25, p = .03). Signifi-
cant findings for CBF-V of the MCA were not observed
for any of the other brain volume indices (p > .05), al-
though all values were in the expected positive direction
(i.e., decreased CBF-V of the MCA and smaller brain
volume).
Hierarchical regression analyses controlling for medical

and demographic characteristics and CBF-V of the MCA
revealed that elevated BMI demonstrated a significant as-
sociation with decreased white matter volume (β = −.26,
p = .04) and strong trends for reduced subcortical gray
matter volume (β = −.22, p = .08) and smaller total brain
volume (β = −.17, p = .07). No such pattern emerged for
total gray matter volume or WMH (p > .05 for each).

Interactive effects between BMI and cerebral perfusion on
brain volume
Moderation analyses using a hierarchical regression model
showed a significant interaction between BMI and cerebral
perfusion on total gray matter volume (β = .23, p = .03).
However, no interactive effects between BMI and CBF-V
of the MCA emerged for total brain volume (β = −.04,
p = .59), subcortical gray matter volume (β = .14, p = .20),
cortical white matter volume (β = −.10, p = .34), or WMH
(β = .13, p = .31).



Table 2 Between BMI group differences among older adults with heart failure

Demographic characteristics Normal weight Overweight Obese χ2/F statistic

N 20 27 33

Age, mean (SD) years 69.75 (8.80) 69.89 (8.44) 66.55 (8.52) 1.18

Sex (% Female) 40.0 25.9 39.4 .17

Years of education, mean (SD) 14.10 (3.01) 14.15 (3.11) 13.58 (2.32) .38

Medical characteristics

LVEF %, mean (SD) 40.15 (14.20) 43.00 (12.74) 44.70 (13.35) .72

NYHA Class (% II, III, IV) 80.0, 20.0, 0.0 88.9, 7.4, 3.7 90.9, 9.1 3.99

Hypertension (% yes) 45.0 74.1 81.8 8.36**

Diabetes (% yes) 15.0 22.2 39.4 4.29

Sleep apnea (% yes) 10.0 14.8 36.4 6.34*

Myocardial infarction (% yes) 45.0 59.3 63.6 1.82

Depression (% yes) 20.0 14.8 21.2 .43

Note. NYHA New York Heart Association; LVEF Left Ventricular Ejection Fraction; *p < .05; **p < .01.

Table 3 BMI independently predicts structural brain volume in older adults with heart failure (N = 80)

WMH TBV Total GM Subcortical GM WM

β SE b β SE b β SE b β SE b β SE b

Block 1

Age, years .23* .02 -.11 1346.84 -.08 811.00 -.14 299.99 -.12 1799.30

Sex -.15 .41 .01 32167.72 -.22 19369.89 -.12 7164.93 .12 42974.36

Education, years -.29* .05 .09 4304.00 -.01 2591.67 .16 958.66 .10 5749.92

LVEF % -.15 .01 -.03 864.47 .03 520.54 -.03 192.55 -.04 1154.89

Hypertension -.01 .34 .13 26933.65 -.18 16218.18 .04 5999.12 .20 35981.92

Diabetes .08 .34 -.07 26560.24 -.11 15993.33 -.16 5915.94 -.05 35483.06

Sleep apnea -.13 .37 .03 29212.06 .09 17590.13 .15 6506.60 .02 39025.75

MI .11 .30 .05 23499.98 -.14 14150.58 -.16 5234.31 .08 31394.71

Depression -.03 .39 .04 31194.14 -.07 18783.64 .01 6948.08 .06 41673.70

ICV .23 .00 .81** .08 .63 .05 .58** .02 .53** .11

R2 .25 .67 .38 .35 .40

F 2.25* 14.16* 4.19* 3.68** 4.65**

Block 2

CBF-V, cm/s -.25* .01 .08 918.63 .04 556.68 .09 205.01 .09 1229.93

R2 .30 .68 .38 .36 .41

F for ΔR2 6.67* .98 .11 .71 .68

Block 3

BMI, kg/m2 .12 .03 -.16 2166.43 .19 1323.46 -.22 484.27 -.26* 2876.44

R2 .30 .69 .40 .38 .45

F for ΔR2 .78 3.35 2.22 3.12 4.53*

Note. *p ≤ 0.05; **p < .01; sex: 1 = males and 0 = females; 1 = positive history and 0 = negative history for hypertension, diabetes, sleep apnea, MI, and depression.
Abbreviations: β – standardized regression coefficients, SE standard error; BMI Body Mass Index; MI Myocardial infarction; ICV Intracranial Volume; CBF-V Cerebral
Blood Velocity of the MCA; WMH White Matter Hyperintensities; GM Gray Matter; WM White Matter Volume.
Volumetric indices units = mm3.
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Discussion
Consistent with past work, high BMI was prevalent and
associated with reduced cerebral blood flow in this sample
of older adults with HF. Obesity has recently been pro-
posed as an independent risk factor for cognitive impair-
ment in HF [20]. The current study extends these findings
and shows that higher BMI adversely affects brain volume
in this population and increased BMI exacerbated the ef-
fects of cerebral hypoperfusion on reduced gray matter
volume. Several aspects of these findings warrant brief
discussion.
The current study suggests that elevated BMI is inde-

pendently associated with reduced structural brain volume
in older adults with HF. There are several possible mecha-
nisms for such findings. First, obesity promotes vascular
risk factors (e.g., hypertension, diabetes) that are known to
produce structural brain changes, even in healthy adults
[33,34]. In contrast, our findings and other work in other-
wise healthy samples suggest obesity and the accompanying
presence of adiposity may introduce unique pathophysio-
logical mechanisms to produce brain changes in HF [23].
For instance, obesity is associated with altered levels of cir-
culating biomarkers, including leptin [35], ghrelin [36], and
brain derived neurotrophic factor (BDNF) [37], among
others. These biomarkers are important for metabolism
regulation and body weight and also promote neuronal sur-
vival, neurogenesis, dendritic synaptic formations, and re-
ducing apoptosis of neurons—all biological processes that
shape the cerebral structure [38-40]. In addition, obesity af-
fects the brain via promotion of inflammatory processes,
with a substantial contribution of genetic variants such as
Fat Mass and Obesity (FTO) gene [41]. Future work is
needed to clarify the exact mechanisms between BMI and
brain volume in HF, particularly as they relate to the above
physiological processes, especially inflammation that is
a core feature of obesity and the associated metabolic
syndrome [42].
The current study suggests that decreased cerebral per-

fusion is associated with increased WMH in persons with
HF, but not with the other MRI indices. Cerebral hypoper-
fusion and subsequent development of WMH is the
widely theorized mechanism of cognitive impairment in
HF [7,9]. Interestingly, higher BMI interacted with cere-
bral perfusion to impact gray matter volume, but not
WMH. The exact reason for this pattern of findings is not
entirely clear. A likely explanation may involve a threshold
effect between obesity, cerebral perfusion, and WMH. For
instance, given the prevalence of white matter damage in
HF persons and its close association with brain hypoperfu-
sion, it is possible that the additive effects of obesity may
not be significant enough to modify this relationship.
Moreover, WMH commonly precede brain atrophy [43]
and it is possible that obesity accelerates this conversion.
Nonetheless, the relationship between obesity and neu-
rocognitive outcomes in HF may be more complicated
than believed and involve other mechanisms beyond cere-
bral hemodynamics (e.g., altered adipokine levels, inflam-
mation, genetic contributors). Future work is much
needed to elucidate the effects of high BMI and cerebral
hypoperfusion on the brain in HF patients.
The current study is limited in several ways. First, the

current study consisted of cross-sectional analyses and
case-controlled prospective studies are needed to deter-
mine whether higher BMI accelerates brain atrophy in HF.
In addition, although BMI is practical and widely used it
remains a coarse measure of obesity. More precise and de-
tailed assessments of obesity (e.g., dual-energy x-ray ab-
sorptiometry) would provide key insight into the effects of
obesity on the brain in HF through its ability to distinguish
between bone, fat, and lean tissue. DEXA imaging would
also help clarify the regional effects of obesity on cerebral
morphometry (e.g., abdominal vs. non-abdominal obesity).
Similarly, although TCD is a non-invasive and reliable
measure of cerebral blood flow [32], it is a non-direct as-
sessment of cerebral perfusion and future studies should
employ arterial spin labeling, phase contrast MRI, or posi-
tron emission tomography to elucidate the interaction be-
tween cerebral perfusion, obesity, and brain volume in HF.
The current study also did not employ a control group
and thus we attempted to statistically control for many
medical and clinical variables that are known to influence
neurocognitive outcomes in HF. As a result, the power of
analyses was reduced and larger studies that utilize healthy
controls are much needed to confirm the current findings.
We also tested the moderating effects of cerebral perfu-
sion on the association between BMI and brain volume,
and studies with larger samples should use model-based
approaches to determine the mediating properties of per-
fusion in this relationship. Lastly, the effect sizes for the
impact of BMI on brain volume were modest and pro-
spective studies with larger samples would help clarify the
clinical meaningfulness of the current findings.

Conclusion
In summary, the current study shows that higher BMI is
an independent contributor to reduced brain volume in
older adults with HF. The mechanisms of this relation-
ship may involve altered cerebral hemodynamics, but are
likely complex and involve multiple physiological pro-
cesses. Prospective studies are needed to confirm the ef-
fects of obesity on neuroimaging indices and clarify the
etiological underpinnings.
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