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characteristics of invasive breast tumors:
gene expression analysis in a large cohort
of female patients
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Abstract

Background: Obesity is a risk factor for breast cancer in postmenopausal women and is associated with decreased
survival and less favorable clinical characteristics such as greater tumor burden, higher grade, and poor prognosis,
regardless of menopausal status. Despite the negative impact of obesity on clinical outcome, molecular mechanisms
through which excess adiposity influences breast cancer etiology are not well-defined.

Methods: Affymetrix U133 2.0 gene expression data were generated for 405 primary breast tumors using RNA isolated
from laser microdissected tissues. Patients were classified as normal-weight (BMI < 25), overweight (BMI 25–29.9) or
obese (BMI≥ 30). Statistical analysis was performed by ANOVA using Partek Genomics Suite version 6.6 using a false
discovery rate <0.05 to define significance.

Results: Obese patients were significantly more likely to be diagnosed ≥50 years or with African American ancestry
compared to lean or overweight women. Pathological characteristics including tumor stage, size or grade, lymph node
status, intrinsic subtype, and breast cancer mortality did not differ significantly between groups. No significant gene
expression differences were detected by BMI in a non-stratified analysis which included all subtypes or within luminal
B, HER2-enriched or basal-like subtypes. Within luminal A tumors, however, 44 probes representing 42 genes from
pathways such as cell cycle, p53 and mTOR signaling, DNA repair, and transcriptional misregulation were differentially
expressed.

Conclusions: Identification of transcriptome differences in luminal A tumors from normal-weight compared to
obese women suggests that obesity alters gene expression within ER+ tumor epithelial cells. Alterations of pathways
involved in cell cycle control, tumorigenesis and metabolism may promote cellular proliferation and provide a molecular
explanation for less favorable outcome of obese women with breast cancer. Targeted treatments, such as mTOR
inhibitors, may allow for improved treatment and survival of obese women, especially African American women, who
are more likely to be obese and suffer outcome disparities.
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Background
Data from the Centers for Disease Control and Prevention
indicate that 68 % of adults in the United States (US)
are overweight (25 ≤ BMI < 30 kg/m2) or obese (BMI ≥
30 kg/m2) [1]. Obesity is associated with significantly
higher all-cause mortality in the general population [2]
and has been associated with type 2 diabetes, cardiovas-
cular disease, asthma, osteoarthritis, and many types of
cancer [3]. If obesity continues to escalate at current rates,
total healthcare costs attributable to obesity-related care
could reach >$860 billion by 2030 and account for 18 % of
total healthcare expenditures in the US [4].
Obesity and weight gain between 20 and 50 years of

age are significant risk factors for breast cancer [5] in
postmenopausal women [6, 7], especially those not using
hormone replacement therapy (HRT) [8]. Although the
association between body mass index (BMI) and breast
cancer subtype is unclear [9–15], obesity has been asso-
ciated with less favorable pathological characteristics
including advanced stage, larger tumor size and metastatic
lymph node involvement [16–19]. In addition, meta-
analyses have detected significant associations between
obesity and both overall and breast-cancer specific
survival [20, 21].
Given the increasing obesity epidemic in the United

States and throughout the world, it is critical to under-
stand how obesity influences breast cancer etiology. Poor
prognosis may be attributable to co-morbid conditions,
inadequate dosing with chemotherapeutic agents, or
biological effects of excess adiposity including increased
levels of estrogen, hyperinsulinemia, or chronic inflam-
mation [22, 23]. To better understand relationships be-
tween the molecular landscape of tumor epithelial cells
and adiposity, gene expression data was generated from
405 microdissected breast carcinomas and analyzed by
BMI at the time of diagnosis.

Methods
Ethics, consent and permissions
All patients enrolled in the Clinical Breast Care Project
met the following eligibility criteria: 1) adult over the age
of 18 years, 2) mentally competent and willing to provide
informed consent, and 3) presenting to the breast centers
with evidence of breast disease. Tissue and blood samples
were collected with approval from the Walter Reed
National Military Medical Center Human Use Committee
and Institutional Review Board. All subjects voluntarily
agreed to participate and gave written informed consent.

Specimen collection and characterization
Tissue was collected from patients undergoing surgical
procedures, including lumpectomy or mastectomy. Within
5–15 min of surgical removal, breast tissue was taken
on crushed, wet ice to the pathology laboratory where a

licensed pathologist or pathologists’ assistant performed
routine pathological analyses. Diagnosis of every speci-
men was conducted by a breast pathologist. Stage and
grade were assigned using guidelines defined by the
AJCC Cancer Staging Manual seventh edition [24] and
the Nottingham Histologic Score [25, 26], respectively.
Intrinsic subtype was determined using the BreastPRS
as previously described [27].

RNA isolation, amplification, aRNA labeling and
hybridization
For each case, the breast pathologist identified tumor
areas for laser microdissection from H&E stained slides.
Two to five serial sections (8 μm thick) were cut, mounted
on glass PEN foil slides (Leica Microsystems, Wetzlar,
Germany), stained using the LCM staining kit (Applied
Biosystems, Foster City, CA) and laser microdissected on
an ASLMD laser microdissection system (Leica Microsys-
tems, Wetzlar, Germany). Slide preparation, staining and
cutting were performed within a 15 min period to pre-
serve RNA integrity. RNA was then isolated using the
RNAqueous-Micro kit (Applied Biosystems, Foster City,
CA) and treated with DNase I to remove any contaminat-
ing genomic DNA. RNA integrity was assessed using the
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA),
converted to biotin-labeled aRNA using two rounds of
amplification with the MessageAmpII aRNA Amplifi-
cation kit (Applied Biosystems, Foster City, CA), and
the concentration and quality of the samples was mea-
sured with the NanoDrop 1000 (NanoDrop Products,
Wilmington, DE) and 2100 Bioanalyzer. Hybridization
with manufacturer provided hybridization controls, wash-
ing, staining and scanning of HG U133A 2.0 arrays
(Affymetrix, Santa Clara, CA) were conducted according
to manufacturer’s protocols [28].

Analysis and statistics
For statistical analyses, BMI was not treated as a continuous
variable; rather patients were classified as normal-weight
(BMI < 25), overweight (BMI 25–29.9) or obese (BMI ≥ 30).
Analysis of clinicopathological characteristics was performed
using chi-square analysis (http://www.physics.csbsju.
edu/stats/contingency_NROW_NCOLUMN_form.html)
with P < 0.05 used to define significance.
Gene expression data were analyzed with Partek®

Genomics Suite v 6.6 (Partek Incorporated). Probe set
intensities were obtained by robust multi-array average
background correction, quantile normalization, median
polish summarization, and log2 transformation. Data in-
tegrity was then assessed by standard GeneChip® quality
control parameters.
Principal component analysis (PCA) was performed

using Partek® Genomics Suite v 6.6 to evaluate whether
gene expression patterns effectively separated tumors by
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BMI. The three principal components accounting for the
greatest portion of variability in gene expression were
used to create a plot in order to visualize possible cluster-
ing by BMI groups. Analysis of variance (ANOVA) ad-
justed for age at diagnosis and self-described ethnicity was

used to identify genes differentially expressed between
BMI groups with a false discovery rate (FDR) <0.05. In the
first analysis, all tumor specimens were included followed
by subgroup analysis within intrinsic subtype groups
(luminal A, luminal B, HER2-enriched, basal-like). Power

Table 1 Clinical and pathological characteristics of 405 primary breast tumors evaluated by microarray analysis

Normal-weight (n = 131) Overweight (n = 132) Obese (n = 142) P-value

Age 0.031

<40 years 0.15 0.11 0.06

40–49 years 0.27 0.20 0.22

≥50 years 0.58 0.69 0.72

Ethnicity 0.031

African American 0.17 0.19 0.32

Asian 0.04 0.02 0.01

Hispanic 0.02 0.02 0.01

Other 0.01 0.02 0.01

Non-Hispanic White 0.76 0.75 0.65

Tumor Size 0.130

T1 0.59 0.56 0.50

T2 0.35 0.34 0.45

T3 0.06 0.10 0.05

Tumor Grade 0.216

Well (Grade 1) 0.23 0.21 0.19

Moderate (Grade 2) 0.42 0.35 0.32

Poor (Grade 3) 0.35 0.44 0.49

Intrinsic Subtype 0.560

Luminal A 0.52 0.48 0.54

Luminal B 0.13 0.08 0.11

HER2-enriched 0.11 0.16 0.08

Basal-like 0.23 0.27 0.24

Normal-like 0.01 0.01 0.03

Lymph Node Status 0.447

Positive 0.36 0.40 0.44

Negative 0.64 0.60 0.56

TNM Stage 0.144

Stage I 0.45 0.40 0.31

Stage II 0.41 0.42 0.48

Stage III 0.12 0.12 0.18

Stage IV 0.02 0.06 0.03

Statusa 0.929

Died of disease 0.08 0.07 0.07

Died other causes 0.02 0.03 0.02

Alive with disease 0.05 0.05 0.03

Alive, disease-free 0.85 0.85 0.88
aPatient status included died of disease if that patients died of metastatic breast cancer, and died other causes if a patient died from other health conditions.
Patients Alive with disease were diagnosed with or have progressed to stage IV breast cancer while those Alive, disease-free have had no additional breast
cancer-events since diagnosis and treatment of the original primary breast tumor

Toro et al. BMC Obesity  (2016) 3:22 Page 3 of 9



analysis was performed using the MD Anderson Can-
cer Center sample size calculator (http://bioinformatics.
mdanderson.org/MicroarraySampleSize/). Pathway en-
richment was performed using the pathway analysis tool
in Partek with an enrichment score of ≥2.0 defining
significance.

Results
Patient characteristics
All patients were diagnosed with invasive breast cancer
between 2001 and 2011. Obese women were significantly
older at diagnosis (P = 0.009) and were significantly more
likely to be African American (P = 0.012) than normal-
weight women. Overweight women did not differ signifi-
cantly for age at diagnosis or ancestry from either normal-
weight or obese women. No pathological characteristics or
patient outcomes differed significantly by BMI (Table 1).

PCA did not effectively cluster samples by BMI (Fig. 1).
No differentially expressed genes were detected between
BMI groups in the initial analysis which included all
tumor subtypes or when comparing obese to non-obese
patients. While PCA did not effectively discriminate tu-
mors by BMI, tumors did cluster by intrinsic subtype.
Thus, to determine whether the inclusion of a heteroge-
neous group of tumors was masking significant gene
expression differences, analyses were performed within
intrinsic subtypes. No differences were detected for lu-
minal B (n = 43), HER2-enriched (n = 48) or basal-like
(n = 99) tumors; however, 44 probes from 42 genes were
differentially expressed by BMI category (Table 2; Fig. 2)
within the luminal A subtype (n = 209). These differen-
tially expressed genes are associated with a number of
pathways involved in tumorigenesis, such as cell cycle
control, mTOR and p53 signaling and DNA repair
(Table 3).

Fig. 1 PCA of gene expression from 405 primary tumor samples. Plot on the top is colored by BMI groups with no obvious clusters detected.
Plot on the left is colored by subtype and demonstrates grouping of the samples by subtype
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Table 2 Genes differentially expressed in tumors from normal-weight compared to obese women. Genes in bold remained statisti-
cally significant when age at diagnosis and self-described ethnicity were included with BMI in ANOVA

All BMI groupsa Normal-weight vs obese

Gene Symbol Probe P-value P-value Fold-change (normal-weight/obese)

ABCA3 204343_at 4.5E-05 9.8E-06 0.66

ACSL1 201963_at 0.0001 3.0E-05 1.48

APOD 201525_at 0.0002 2.3E-05 2.36

AVL9 212471_at 4.9E-05 9.7E-06 0.82

BUB1 209642_at 1.6E-05 6.5E-05 0.64

CCNB2 202705_at 2.8E-05 1.4E-05 0.64

CDC25C 205167_s_at 0.0002 7.4E-05 0.67

CDC6 203968_s_at 0.0002 8.5E-05 0.72

CENPA 204962_s_at 8.9E-05 3.2E-05 0.59

CENPF 207828_s_at 2.3E-05 6.7E-05 0.65

CEP55 218542_at 7.6E-05 5.1E-05 0.60

CHEK1 205394_at 0.0002 5.1E-05 0.70

CORO2B 209789_at 0.0002 3.9E-05 1.27

DENND1A 219763_at 3.3E-07 5.0E-08 0.66

EXO1 204603_at 0.0003 8.8E-05 0.80

EZH2 203358_s_at 3.2E-05 1.5E-05 0.68

FLRT2 204359_at 0.0005 8.6E-05 1.60

FOXM1 202580_x_at 1.2E-05 8.9E-06 0.67

GTSE1 204317_at 0.0003 7.7E-05 0.83

IGF1 209542_x_at 2.4E-05 6.2E-06 1.75

211577_s_at 3.5E-05 1.0E-06 1.72

KIF14 206364_at 1.5E-05 1.0E-05 0.70

KIF18B 222039_at 9.1E-06 1.1E-05 0.67

KIF2C 209408_at 0.0002 3.0E-05 0.66

KIF4A 218355_at 0.0001 5.5E-05 0.64

KLHL12 219931_s_at 0.0005 8.4E-05 0.79

MELK 204825_at 4.0E-06 2.2E-06 0.58

MKI67 212022_s_at 0.0007 3.5E-05 0.69

212021_s_at 0.0002 3.4E-05 0.71

NUDT13 214136_at 0.0005 9.3E-05 0.74

OGN 218730_s_at 0.0003 5.4E-05 2.05

OIP5 213599_at 7.5E-05 4.5E-05 0.67

PARP1 208644_at 0.0004 6.7E-05 0.81

PDIA4 211048_s_at 0.0005 9.5E-05 0.80

PRC1 218009_s_at 0.0002 7.3E-05 0.66

PSMD4 200882_s_at 0.0005 9.1E-05 0.83

RBMS3 206767_at 0.0003 5.9E-05 1.28

SCCPDH 201826_s_at 0.0005 9.8E-05 0.73

SERPINB13 216258_s_at 3.9E-05 2.6E-05 0.93

TADA2A 209938_at 0.0005 9.1E-05 0.84

TIMELESS 203046_s_at 1.1E-05 1.5E-05 0.75
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Discussion
Worldwide obesity rates are increasing at an alarming
rate [29] and in the United States, >50 % of adults are
expected to be obese by 2030 [4]. Given the poor prog-
nosis of obese women with breast cancer, improved un-
derstanding of how obesity impacts survival is critical.
Identification of molecular profiles in invasive breast
carcinomas that correlate with obesity would allow for
development of targeted therapeutics or risk reduction
strategies that could improve outcomes in obese women.
In this study, we detected 42 unique genes that were
differentially expressed in luminal A breast tumors from
normal-weight compared to obese women. Tumors from
overweight patients did not differ significantly from those
in normal-weight or obese women.
To our knowledge, this is the first study to identify

transcriptomic changes associated with obesity in epithe-
lial cells of luminal A tumors. Kwan et al. evaluated the

effects of BMI in a set of 1,676 early-stage tumors where
intrinsic subtype was assigned using the PAM50 qRT-PCR
assay [11] and found that high obesity (BMI ≥ 35) was as-
sociated with decreased expression of ESR1 and increased
expression of proliferation genes. Of the 10 proliferation
genes assayed by Kwan et al., four (CENPF, CEP55,
MK167 and KIF2C) were also expressed at significantly
higher levels in tumors from obese compared to normal-
weight patients in our study.
Fuentes-Mattei et al. performed microarray-based tran-

scriptome analysis in ER+ tumors and identified 112 genes
differentially expressed between non-obese and obese
patients. Gene enrichment analysis detected significant
alterations in the AKT-target and epithelial-mesenchymal
transition pathways. Activation of the AKT/mTOR
pathway was also detected in tumors from obese mice
[30]. Although none of the differentially expressed genes
from our study were also in the study from Fuentes-

Table 2 Genes differentially expressed in tumors from normal-weight compared to obese women. Genes in bold remained statisti-
cally significant when age at diagnosis and self-described ethnicity were included with BMI in ANOVA (Continued)

TYMS 202589_at 6.5E-06 3.9E-06 0.65

WHSC1 209054_s_at 0.0003 8.6E-05 0.81

ZWINT 204026_s_at 8.6E-06 3.1E-06 0.67
aGenes that differed significantly in expression levels when ANOVA was performed across normal weight, overweight and obese groups

Fig. 2 Box and whiskers plot of differential gene expression in tumors from normal weight and obese women. The highest fold-differences were
detected for APOD and OGN with 2.36- and 2.05-fold higher expression in tumors from obese compared to normal weight women; MELK
demonstrated the highest increase (1.71-fold) in expression in normal compared to obese women
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Mattei et al., pathway enrichment analysis of our differ-
entially expressed genes also revealed alterations in the
mTOR signaling pathway.
A transcriptomic signature of obesity encompassing

662 differentially expressed genes was previously reported
based on tumor biopsy specimens from 103 female pa-
tients with locally advanced breast cancer enrolled in
neoadjuvant studies, regardless of ER status [31]. Gene
annotation enrichment analysis detected an expression
signature overrepresented by genes involved in regulation
of transcription and nucleus that was associated with
shorter time to metastasis in two public data sets; how-
ever, no correlation was detected in four other databases.
Of note, a significantly higher proportion of African
Americans were obese compared to normal or over-
weight, and a number of differentially expressed probes
in their dataset, including 205048_s_at (PSPHL), 206777_s_at
(CRYBB2P1) and 212777_at (SOS1), are known to be
differentially expressed in a variety of tissue types between
African Americans and European Americans [32–39].
Inclusion of late-stage tumors not stratified by subtype
or ER status, in combination with confounding gene ex-
pression results attributable to genetic ancestry, may have
affected the ability to detect transcriptome changes associ-
ated with BMI.
A critical difference between our data and other re-

ports is our use of laser microdissection to isolate tumor
cells while samples from the other studies were com-
prised of 15–30 % stromal cells. Breast adipose tissue
serves as fuel for tumor growth, recruits macrophages
and stimulates an inflammatory response [40]. Data from
our laboratory demonstrated that tumor-adjacent adipose
has an altered inflammatory response and increased
immunotolerance [41] and recent data demonstrates that

co-culturing of ER+ breast cancer cells with adipose stro-
mal/stem cells from obese women enhanced proliferation
of the breast cancer cells, and these breast cancer cells
demonstrated increased epithelial-mesenchymal transition
and expression of metastasis genes [42]. Thus, while laser
microdissection of tumor cells may have provided a mo-
lecular portrait of gene expression in the tumor epithelia,
studies that allowed for a significant proportion of stromal
cells, including adipose, may have detected alterations
associated with excess adiposity that are present in the
tumor microenvironment.
Limitations of this study include lack of long-term

follow-up and treatment information as well as limited
sample sizes for the non-luminal A subtypes. Samples
were collected 2001–2011, thus long-term outcome infor-
mation was not available for all patients. Given that lu-
minal A tumors have a longer time to relapse (5–15 years)
than other subtypes [43], differences in long-term mortal-
ity by BMI may not be detected. In conjunction, these
patients were treated at WRNMMC, a Department of
Defense military hospital. Although all patients within this
equal-access health care system are provided standard
health care, it was not possible to determine whether
treatment regimens were equivalent for obese women,
or if any women received agents such as mTOR inhibi-
tors that may be more effective in treating obese women
with luminal A breast tumors. Finally, lack of differentially
expressed genes in the non-luminal A subtypes, especially
luminal B tumors, may reflect small sample sizes. Power
analysis demonstrated that to detect ≥1.5 fold expression
level differences with 80 % power, a minimum of 43
patients in each BMI group would be needed. Within the
luminal A subtype, 68, 64 and 77 tumors were from nor-
mal weight, overweight and obese women, respectively;

Table 3 Differentially regulated pathways between tumors from normal-weight and obese women

KEGG pathway Enrichment score Enrichment P-value % Genes present in pathway

Cell cycle 10.9 1.8E-005 4.3

p53 signaling pathway 10.4 3.1E-005 6.5

Progesterone-mediated oocyte maturation 9.6 7.0E-005 5.3

Oocyte meiosis 8.7 0.0002 4.2

One carbon pool by folate 3.1 0.0456 6.7

Mismatch repair 2.7 0.0692 4.3

Base excision repair 2.4 0.0951 3.1

Transcriptional misregulation in cancer 2.3 0.0962 1.2

ABC transporters 2.2 0.1064 2.8

Aldosterone-regulated sodium reabsorption 2.1 0.1175 2.5

Fatty acid metabolism 2.1 0.1231 2.4

Lysine degradation 2.1 0.1258 2.3

Proteasome 2.1 0.1285 2.4

mTOR signaling pathway 2.0 0.1394 2.1
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across the other subtypes there were a total of 43, 48 and
99 luminal B, HER2-enriched and basal-like tumors total.

Conclusion
Excess adiposity does not affect all breast tumors equally;
rather, differential gene expression by BMI was restricted
to luminal A tumors. Alterations in pathways associated
with cell cycle control, mTOR and p53 signaling, and fatty
acid metabolism may explain the less favorable outcomes
associated with obesity. In addition, detection of alter-
ations in these pathways allows for the use of agents such
as mTOR inhibitors to more effectively treat obese
women with luminal A tumors and decrease outcome
disparities.
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