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Abstract

Background: Resting metabolic rates (RMR) vary across individuals. Understanding the determinants of RMR could
provide biological insight into obesity and its metabolic consequences such as type 2 diabetes and cardiovascular diseases.

Methods: The present study measured RMR using reference standard indirect calorimetry and evaluated
genetic variations from an exome array in a sample of children and adults (N = 262) predominantly of African
and European ancestry with a wide range of ages (10 – 67 years old) and body mass indices (BMI; 16.9 – 56.
3 kg/m2 for adults, 15.1 – 40.6 kg/m2 for children).

Results: Single variant analysis for RMR identified suggestive loci on chromosomes 15 (rs74010762, TRPM1,
p-value = 2.7 × 10−6), 1 (rs2358728 and rs2358729, SH3D21, p-values < 5.8x10−5), 17 (AX-82990792, DHX33, 5.5 ×
10−5) and 5 (rs115795863 and rs35433829, C5orf33 and RANBP3L, p-values < 8.2 × 10−5). To evaluate the effect
of low frequency variations with RMR, we performed gene-based association tests. Our most significant locus
was SH3D21 (p-value 2.01 × 10−4), which also contained suggestive results from single-variant analyses. A
further investigation of all variants within the reported genes for all obesity-related loci from the GWAS
catalog found nominal evidence for association of body mass index (BMI- kg/m2)-associated loci with RMR,
with the most significant p-value at rs35433754 (TNKS, p-value = 0.0017).

Conclusions: These nominal associations were robust to adjustment for BMI. The most significant variants
were also evaluated using phenome-wide association to evaluate pleiotropy, and genetically predicted gene
expression using the summary statistics implicated loci related to in obesity and body composition. These
results merit further examination in larger cohorts of children and adults.
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Background
Resting metabolic rates (RMR) in humans represent the
energy required to sustain body functions under resting
conditions, and varies across individuals [1]. Generally,
RMR is lower in women than in men, and in older adults
compared to younger adults, and is mainly dependent on

the amount of muscle mass (and other metabolic tissues)
[2]. Other variables impacting RMR include sleep duration
[3], physical activity [4], and obesity [1, 5, 6]. As the
amount of metabolic body tissue is strongly related to
RMR, RMR per total body mass is reduced in obese indi-
viduals compared to normal weight individuals, due to
their larger proportion of fat mass relative to the total
body mass [2]. Moreover, RMR slows in response to
weight loss in a phenomenon termed metabolic adapta-
tion that acts to counter weight loss and is thought to
contribute to weight regain [7].
Several studies have demonstrated the heritability of

RMR (h2 ≈ 0.30) [1, 8, 9]. It has also been shown that
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RMR is lower in African than in European Americans,
even in childhood [3, 10–13]. Some of this difference
has been attributed to smaller organ size in African
Americans [14] and reduced cardiorespiratory fitness
[4]. Due to the recent rapid increase in the prevalence of
obesity, especially in African Americans, a better under-
standing of genetic causes of inter-individual and racial
variations in RMR is important to increase our
knowledge of the biologic pathways contributing to
obesity [15].
Although energy balance is critical to the development

of obesity, few studies have examined the genetic architec-
ture of energy expenditure (EE) in genome-wide linkage
scans [16–18], admixture mapping [19], or candidate gene
analyses [20–24]. A single genome-wide association study
(GWAS) has examined EE and related obesity phenotypes
in Hispanic children [25]. However, it is difficult to amal-
gamate these studies since the phenotypic measures in
these studies were conducted under various conditions
(e.g., laboratory or free-living), and used different methods
to assess RMR, other metabolic biomarkers, and physical
activity characteristics. Additionally, it is likely that the
common SNPs interrogated using GWAS and early candi-
date gene studies did not capture the effects of rare
variants which may play a role in RMR.
The goal of this study was to use an exome array geno-

typing platform to identify genetic variants which might
influence an individual’s RMR, and determine their

association with body adiposity and metabolic biomarkers.
We hypothesized that known obesity-related variants
would also be associated with RMR. To test this hypoth-
esis, we evaluated the genetic associations of exonic vari-
ation with RMR measured using reference standard room
calorimetry in a racially diverse and carefully phenotyped
cohort of children and adults. Additionally, we examined
the most significant results of the RMR genetic analysis
with adiposity measures, lipids, and glucose homeostasis,
in a candidate phenome-wide association study, as well as
using genetically predicted gene expression (GPGE) to
identify gene targets of single nucleotide polymorphisms
(SNPs) with an effect on gene expression in a variety of
body tissues. Overall, our long-term goal is to locate gen-
etic variants, which determine inter-individual differences
in RMR that potentially can be used to alter lifestyle and
treatment on an individual level.

Methods
Participants recruitment and study design
Healthy youth (8 – 17 years old) and adults (18 – 65 years
old), with a range of BMI values were recruited from the
Metropolitan Nashville, Tennessee, USA general popula-
tion. Study participants were recruited using flyers, e-mail
distribution lists, and personal contacts to studies evaluat-
ing novel methods to measure physical activity in youth
and adults [26]. Descriptive characteristics of participants
are presented in Table 1. All participants were healthy as

Table 1 Characteristics of study samples by race/ethnicity

Characteristic Total White Black Hispanic

N Mean[SD] or % N Mean[SD] or % N Mean[SD] or % N Mean[SD] or %

Age (years) 262 28[16] 148 30[16] 106 26[15] 7 23[11]

Sex (% female) 262 40% 148 44% 106 37% 7 29%

Weight (kg) 262 76[23] 148 76[23] 106 76[21] 7 80[17]

Height (m) 262 1.64[0.12] 148 1.65[0.13] 106 1.64[0.10] 7 1.65[0.12]

BMI (kg/m2) 262 28[7] 148 27[7] 106 28[7] 7 29[2]

Fat Mass (kg) 250 27[15] 142 27[15] 100 27[15] 7 31[7]

Fat-Free Mass (kg) 250 49[13] 142 49[14] 100 49[11] 7 49[17]

Body Fat % 250 34[12] 142 34[12] 100 35[13] 7 41[10]

SBP (mmHg) 225 119[14] 122 120[16] 95 120[11] 7 116[14]

DBP (mmHg) 225 72[9] 122 72[10] 95 71[8] 7 71[6]

Glucose (mg/dL) 165 50[38] 94 52[37] 65 45[39] 5 75[32]

Insulin (μU/mL) 222 73[62] 130 66[48] 86 81[65] 5 137[197]

Cholesterol (mg/dL) 228 163[34] 124 166[36] 98 159[31] 6 164[37]

Triglycerides (mg/dL) 228 81[57] 124 93[66] 98 65[37] 6 110[32]

HDL (mg/dL) 228 54[17] 124 52[16] 98 56[18] 6 43[18]

LDL (mg/dL) 228 93[29] 124 96[31] 98 89[25] 6 99[21]

RMR (kcal/day) 258 1912[532] 144 1885[515] 106 1940[536] 7 1898[722]

VO2Max (ml/kg/min) 184 2286[849] 96 2505[969] 84 2039[601] 4 2029[741]
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determined by a physician, nonsmokers, without limita-
tions on exercise tolerance, and without chronic pulmon-
ary conditions (e.g. asthma) or taking prescription
medications known to interfere with RMR. All applicable
institutional and governmental regulations concerning the
ethical use of human volunteers were followed during this
study, in accordance with the ethical principles of the
Helsinki-II Declaration. All adult (≥18 years old) and
youth (<18 years old) participants and the parents or legal
guardians of youth signed an informed consent or assent
document as appropriate, which was approved by the
Vanderbilt University Institutional Review Board.
Phenotypic assessments were conducted at the Clinical

Research Center (CRC) during two study visits. At the
first visit, sociodemographic information including self-
declared race/ethnicity, health history, systolic and
diastolic blood pressure, and physical fitness (VO2max)
were assessed. The second visit included measurement of
body composition using dual-energy X-ray absorptiometry
(DXA) and a ~24-h stay in a fast response, whole-room
indirect calorimeter (volume = 19 m3) that assures high-
precision EE measurements in a controlled environ-
ment under semi-naturalistic conditions (i.e. not
wearing a breathing mask). During the stay, participants
followed a structured protocol consisting of self-paced
10-min ambulatory exercises and sedentary and activity
tasks throughout morning and afternoon sessions.
Beyond these structured activities, participants were en-
couraged to resume their normal daily routine as much
as possible without specific suggestions. The meals
(breakfast, lunch, dinner, afternoon and evening snacks)
were given at set times and portions were individual-
ized for body weight and activity level energy content
and macro- and micronutrient amounts. Participants
were instructed to go to bed at 10:00 pm and were
woken up at 6:00 am for the measurement of RMR.
After RMR measurement, a fasting blood sample was
collected for measuring physiological markers and
DNA extraction. After eating breakfast, participants
were discharged from the CRC.

Data collection protocol
Phenotyping
Stature (height) was measured within 0.5 cm using a cali-
brated wall-mounted stadiometer (Perspective Enterprises,
Portage, MI). Body weight was measured within 0.1 kg
using a calibrated beam platform scale (Detecto-Medic,
Detecto Scales, Inc, Northbrook, IL) with participants
wearing light clothing and no shoes. BMI was calculated
from weight and height (kg/m2). Total body fat free mass
and fat mass were measured using DXA (GE Medical
Systems, Madison WI, enCORE 2007 software version
11.40.004). Systolic and diastolic blood pressure (SBP and
DBP, respectively) were measured in triplicate after

10 min of resting in a supine position using an automatic
inflating blood pressure cuff (DINAMAP, GE Healthcare).
RMR was measured in the room calorimeter in the morn-
ing following an overnight sleep and a 10-h fast, and was
defined as the average EE during a 30-min period while
the subject laid in the supine position with minimal
movement. RMR was calculated minute-by-minute from
measured rates of oxygen (O2) consumption and carbon
dioxide (CO2) production using Weir’s equation [27]. Peak
oxygen uptake (VO2max) was measured using a modified
Bruce treadmill exercise test protocol [28]. Breath-by-
breath O2 consumption and CO2 production were mea-
sured using a MedGraphics Ultima Series system, and
processed and analyzed with the BreezeSuite software
Version 6.4.023 (St. Paul, MN).

Blood collection and measurements
Blood samples were collected following ~10 h of sleep and
fast in the room calorimeter. Plasma was separated by cen-
trifugation and stored at -80 °C. Glucose was measured
using the Vitros Chemistry analyzer and insulin was mea-
sured using radioimmuno assay. Plasma triglycerides, total
cholesterol, low-density lipoprotein (LDL), and high-
density lipoprotein (HDL) concentrations were measured
using enzymatic kits from Cliniqa Corp. (San Marcos, CA).

DNA extraction and genotyping
All DNA samples were isolated from whole blood using
the Autopure LS system (QIAGEN Inc., Valencia, CA).
Genomic DNA was quantitated via an ND-8000 spectro-
photometer and DNA quality was evaluated via gel elec-
trophoresis. We genotyped DNA from the 272
participants using the custom Affymetrix Axiom Exome
Genotyping Array (Affymetrix Inc., Santa Clara, CA). The
genomic DNA samples were processed according to
standard Affymetrix procedures for processing of the
assay. The data were processed for genotype calling using
the Affymetrix Power Tools software (APT, Affymetrix
Inc., Santa Clara, CA).

Genotyping quality control
All monomorphic single nucleotide polymorphisms
(SNPs) (N = 163,778) were removed. Variants were
retained for analysis if they had a minor allele fre-
quency (MAF) of at least 0.01 and did not deviate
from Hardy-Weinberg Equilibrium (p > 1 × 10−6). This
resulted in 66,088 variants for further analysis. Qual-
ity control also removed three individuals for low
genotyping efficiency (genotyping call rate <95%), and
seven individuals were removed due to gender errors
(using only those variants with a MAF >0.2), for a
final total of 262 individuals. In order to quantify
ancestry among samples, EIGENSTRAT [29] was used
to estimate continuous axes of ancestry. The top five
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principal components (PCs) were used as covariates
in regression models to test for genotype associations.

Statistical analysis
Demographic data were presented as means and standard
deviations for continuous variables, and frequencies and
proportions for categorical data, and analyzed using linear
regression (STATA 14.0 statistical software, College
Station, TX). Single variant linear regression analysis was
performed on the entire sample using the RVTest analysis
program and incorporating information from a kinship
matrix to account for relatedness between subects [30].
The results were processed using RAREMETAL [31] for
single variant and SKAT gene-based tests [32] and
construction of summary figures. Effect sizes are reported
as regression coefficients and standard errors. RMRs were
inversely transformed. Analyses included age, sex, five
principal components as covariates to address the ethnic
heterogeneity, and BMI to account for the impact of body
size on RMR. Statistical significance was determined using
a Bonferroni correction (p-value threshold = 7.57 × 10−7

for single variant analysis).
For the candidate PheWAS, top SNPs from the associ-

ation analysis with RMR were selected for evaluation with
other phenotypes available in the sample. Phenotypes were
transformed to approximate normality, if necessary. BMI
was excluded as a covariate for measures directly related
to body composition (i.e. fat mass, fat-free mass, body fat
percentage). Statistical analysis was performed as above,
using RVTest and RAREMETAL.
To evaluate the effects of known obesity genes on

RMR, we examined all variants within significant genes
reported in the Locke et al. [33] (BMI), Shungin et al
[34] (waist-to-hip ratio adjusted for BMI), and Lu et al
[35] (body fat percentage) GWAS papers for evidence of
association, assuming an a priori hypothesis of associ-
ation between obesity-risk genes and RMR.
To evaluate the genetic association results in the context

of gene expression further, we employed a novel MetaXcan
method [36], which conducts a test of association between
phenotypes and gene expression levels predicted by genetic
variants in a library of tissues from the GTEx project [37].
MetaXcan is a meta-analysis approach that conducts
the PrediXcan [38] test using genotype association
summary statistics, rather than conducting the tests
in individual level data.

Results
The sample consisted of 118 children (ages 10–16) and
159 adults (ages 18–67). A majority (n = 158; 57%) were
European Americans, 40% were African Americans
(n = 106), and 3% were Hispanics (n = 7; Table 1). Daily
RMR was higher among children than adults (1994.0 vs
1782.4; p-value = 0.0005), correlated with fat-free mass

(r = 0.62 and 0.56, respectively) and correlated with body
weight more strongly in children than adults (r = 0.70
and 0.32, respectively; Tables S1 and S2 (in Additional
file 1)). BMI was not strongly correlated with RMR in
adults (r = 0.20), but was more so in children (r = 0.57),
therefore genetic association with RMR was evaluated
both with and without BMI as a covariate. Although
single variant association testing for RMR adjusted for
age, sex, BMI and principal components of ancestry
(lambda = 1.041; Figure S1 (in Additional file 1)) did not
reveal any signals reaching stringent statistical signifi-
cance thresholds (Table 2), the top signal (p-value =
2.73 × 10−6) we found is located on chromosome 15
(Fig. 1). This variant, rs74010762, leads to a synonymous
change within the TRPM1 gene (transient receptor
potential cation channel, subfamily M, member 1).
Additional findings of potential interest include two
nonsynonymous variants in SH3D21 (SH3 [SRC
Homology 3] domain containing 21). Both SNPs
(rs2358728 and rs2358729) are uncommon, each with an
MAF of 0.05. BMI unadjusted results are presented in
Additional file 1: Figures S2–S5 .
In our analysis of primary traits of interest among

the other available metabolic and anthropometric
phenotypes in a candidate PheWAS (phenome-wide
association study) we found a few nominally signifi-
cant associations (Table 3). The most significant asso-
ciation was between rs73277676 (RMR p-value = 2.8 ×
10−4) and systolic blood pressure (p-value = 0.003).
Cross-phenotype comparison of the two SH3D21 vari-
ants revealed nominal associations with glucose level
(p-values = 0.032 and 0.039). The overall top variant
from the RMR single variant analysis, rs74010762,
was not significantly associated with any of the
phenotypes evaluated, nor did any variant reach stat-
istical significance accounting for the number of SNPs
and phenotypes tested (p-value < 1.90 × 10−4), albeit a
conservative threshold given the correlation between
phenotypes. Fat free mass, fat mass, and bone mineral
density were associated with a small number of vari-
ants approaching suggestive significance thresholds.
Glucose level was associated with most of the candi-
date SNPs, with 5 SNPs having a p-value of ≤0.05.
Results of gene-based association tests using SKAT

for all variants with a MAF less than 5% are
presented in Table 4 and Fig. 2. The most strongly
associated gene with RMR was SH3D21 (p-value = 2 ×
10−4), represented by the two variants mentioned
above. Other genes of interest included CRHR2 (cor-
ticotropin releasing hormone receptor 2) and
RANBP3L (RAN binding protein 3-like). Both of these
genes were represented by one variant among the top
hits from the single variant analysis and each had two
total SNPs for the SKAT analysis.
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To best utilize the exome chip, which emphasizes cover-
age of coding variants, and to account for differences from
reported index variants, we evaluated all variants within
known obesity-related genes from the GWAS catalog (270
variants from 79 genes) in the context of RMR. Evaluation
of these variants did not yield substantially more nomin-
ally significant associations than expected by chance
(0.05 × 270 = 13.5; Table S2 (in Additional file 1)). The top

result rs35433754 (p-value = 0.0017) was in the gene
TNKS, previously implicated in extreme early-onset
obesity and adult waist circumference [39]. Despite the
genes being chosen for known associations with obesity
[33], adjusting for BMI did not affect the estimates of
effect or significance of the test in most cases (11/17).
Evaluation of genetically predicted gene expression

(GPGE) levels in GTEx tissue references identified

Fig. 1 Manhattan plot of single variant associations with resting metabolic rate

Table 2 Top results from single variant association analysis of inverse RMR

SNP Chr. Position Alleles Annotation MAF P-value Beta Beta SE

rs74010762 15 31362279 A/G Synonymous:TRPM1 0.02 2.7E-06 −0.00015 3.2E-05

rs2358728 1 36785855 C/T Nonsynonymous:SH3D21 0.05 9.4E-06 −0.00011 2.5E-05

rs200903851 17 5353492 -/A Intron:DHX33 0.01 5.5E-05 0.00019 4.8E-05

rs2358729 1 36785853 C/A Nonsynonymous:SH3D21 0.05 5.7E-05 −0.00011 2.7E-05

rs115795863 5 36227609 T/C Nonsynonymous:C5orf33 0.03 7.7E-05 0.00013 3.2E-05

rs35433829 5 36265559 G/T Nonsynonymous:RANBP3L 0.03 8.1E-05 0.00013 3.2E-05

rs28545754 9 140243844 C/T Nonsynonymous:EXD3 0.45 0.00010 3.7E-05 9.4E-06

rs8192498 7 30701812 C/T Nonsynonymous:CRHR2 0.02 0.00012 0.00014 3.7E-05

rs41272321 3 132338346 T/G Nonsynonymous:ACAD11 0.08 0.00013 −6.8E-05 1.8E-05

rs2729772 11 76979550 T/C Nonsynonymous:GDPD4 0.10 0.00013 5.5E-05 1.4E-05

rs41284084 10 90492227 T/G Nonsynonymous: LIPK 0.06 0.00013 8.7E-05 2.3E-05

rs1484930 2 146259628 C/A Intergenic 0.32 0.00014 −4.9E-05 1.3E-05

rs2251220 7 138601826 G/A Nonsynonymous:KIAA1549 0.48 0.00016 4.2E-05 1.1E-05

rs10752838 1 181116023 C/T Intergenic 0.42 0.00017 −3.9E-05 1.1E-05

rs924752 4 120853499 A/G Intergenic 0.46 0.00021 −3.9E-05 1.0E-05

rs6430083 2 146247003 T/C Intergenic 0.32 0.00025 −4.7E-05 1.3E-05

rs2401751 14 88946622 G/A Nonsynonymous:PTPN21 0.36 0.00026 −4.5E-05 1.2E-05

rs2774960 7 138602417 G/A Nonsynonymous:KIAA1549 0.47 0.00027 4.0E-05 1.1E-05

rs73277676 8 83110968 T/G Intergenic 0.16 0.00028 −5.7E-05 1.6E-05

rs9630182 11 13620172 C/T Intergenic 0.45 0.00028 −3.8E-05 1.0E-05

rs80575 22 36539754 T/G Intron:APOL3 0.48 0.00030 −3.9E-05 1.1E-05
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UHMK1 (U2AF homology motif (UHM) kinase 1) GPGE
in tibial nerve tissue as nominally associated with RMR by
MetaXcan (p-value = 5.96 × 10−5; Table 5). This gene is
not near any of the top association results presented in
Table 2. Also notable from the GPGE results are the num-
ber of tissues (N = 16) in which ACP6 (acid phosphatase 6,
lysophosphatidic) predicted expression was associated
with p-value <0.0001.

Discussion
This is the first study assessing association of exome chip
gene coding variation with RMR measured using a refer-
ence standard method in a in a multi-ethnic sample of
children and adults. We evaluated 66,088 genetic variants
in 262 individuals through single-variant association and
gene-based tests of genetic exposures and GPGE, and also

considered the effect of known obesity loci. We did not
identify a variant or a gene associated with RMR and
meeting stringent Bonferroni statistical significance
thresholds. However, we identified some suggestive associ-
ations, which may have biological plausibility for a role in
energy homeostasis and merit further studies.
The TRPM1 (transient receptor potential cation

channel, subfamily M, member 1) gene showed the most
significant association with RMR. This gene has been
previously implicated in Mendelian forms of night blind-
ness [40–42], and functionally localized to retinal cells
[43, 44]. Expression of this gene in GTEx suggests other
tissues with high expression are skin and testis. The
functional role of the SH3D21 gene significantly associ-
ated with RMR is not well known aside from containing
three SH3 domains suggesting a likely role in protein

Table 3 Candidate PheWAS p-values for RMR-associated variants with related traits

SNP Body Fat % Fat Mass Fat-Free Mass BMI Glucose Insulin Total Cholesterol LDL HDL Trig. VO2Max SBP

rs74010762 0.96 0.36 0.061 0.36 0.44 0.13 0.44 0.050 0.13 0.51 0.24 0.53

rs2358728 0.30 0.72 0.088 0.95 0.032 0.14 0.66 0.53 0.43 0.14 0.38 0.90

rs200903851 0.66 0.60 0.26 0.52 0.24 0.90 0.58 0.085 0.22 0.74 0.039 0.19

rs2358729 0.88 0.75 0.16 0.69 0.039 0.24 0.98 0.99 0.59 0.19 0.65 0.90

rs115795863 0.30 0.29 0.77 0.81 0.050 0.86 0.95 0.70 0.60 0.52 0.55 0.20

rs35433829 0.29 0.28 0.78 0.81 0.050 0.86 0.93 0.67 0.59 0.51 0.57 0.20

rs28545754 0.14 0.33 0.14 0.91 0.72 0.90 0.46 0.43 0.76 0.34 0.22 0.98

rs8192498 0.29 0.49 0.68 0.59 0.96 0.077 0.43 0.99 0.83 0.090 0.43 0.42

rs41272321 0.69 0.38 0.93 0.53 0.87 0.20 0.014 0.028 0.24 0.59 0.99 0.94

rs2729772 0.68 0.50 0.38 0.41 0.014 0.064 0.35 0.81 0.62 0.23 0.43 0.050

rs41284084 0.12 0.21 0.89 0.38 0.95 0.32 0.11 0.32 0.48 0.92 0.23 0.61

rs1484930 0.55 0.79 0.21 0.87 0.59 0.066 0.62 0.81 0.70 0.45 0.16 0.091

rs2251220 0.68 0.95 0.31 0.84 0.81 0.37 0.57 0.22 0.052 0.16 0.21 0.85

rs10752838 0.66 0.93 0.33 0.41 0.79 0.027 0.25 0.58 0.56 0.59 0.061 0.19

rs17624798 0.90 0.81 0.38 0.50 0.91 0.33 0.48 0.81 0.26 0.46 0.26 0.95

rs924752 0.77 0.62 0.25 0.37 0.68 0.17 0.89 0.96 0.27 0.43 0.12 0.87

rs6430083 0.46 0.71 0.23 0.74 0.85 0.066 0.62 0.82 0.76 0.31 0.14 0.058

rs2401751 0.45 0.56 0.25 1.00 0.28 0.43 0.48 0.48 0.37 0.11 0.47 0.71

rs2774960 0.86 0.74 0.15 0.89 0.90 0.77 0.64 0.30 0.052 0.12 0.21 0.94

rs73277676 0.47 0.46 0.88 0.53 0.089 0.22 0.41 0.55 0.61 0.56 0.046 0.0038

rs9630182 0.41 0.38 0.85 0.98 0.13 0.21 0.17 0.11 0.73 0.47 0.62 0.22

rs80575 0.75 0.082 0.046 0.10 0.79 0.47 0.88 0.71 0.77 0.75 0.082 0.20

LDL Low density lipoprotein, HDL high density lipoprotein, Trig. Triglycerides, SBP systolic blood pressure

Table 4 Gene-based tests of resting energy expenditure

Gene Chr. Variants Average Allele Frequency Minimum Allele Frequency Maximum Allele Frequency P-Value

SH3D21 1 2 0.048 0.047 0.049 2.0 × 10−4

CRHR2 7 2 0.031 0.019 0.043 3.6 × 10−4

RANBP3L 5 2 0.031 0.031 0.031 4.4 × 10−4

C5orf33 5 2 0.020 0.0097 0.031 6.2 × 10−4
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binding. However, among tissues included in GTEx,
SH3D21 is most robustly expressed in thyroid.
Other genes of interest included CRHR2 (corticotropin

releasing hormone receptor 2) and RANBP3L (RAN
binding protein 3-like). CRHR2 has been associated with
endometriosis [45], localization of glucose transporters
in the placenta [46], colorectal cancer [47], stress
response in the cortisol pathway [48, 49], and leptin
responsiveness [50]. Variants in this gene have also been
associated with preterm birth [51]. This gene is
expressed predominantly in the pituitary gland from
GTEx. RANBP3L has been observed to act as a nuclear
exporter for Smad1/5/8, however, little else has been
reported to date about this protein [52]. Expression of
this gene in GTEx is observed more predominantly in
brain regions, including caudate and nucleus accumbens.
Genetic analyses have identified suggestive associations
near RANBP3L with height [53], hypertension [54], and
serum tamsulosin hydrochloride concentration [55]. Al-
though the SNP associated with both RMR and systolic
blood pressure is located in an intergenic region, there
were also several nominal signals among RMR hits that
were associated with glucose levels. These five variants
include two in SH3D21, one in RANBP3L, one in GDPD4
(glycerophosphodiester phosphodiesterase domain con-
taining 4) and one in NADK2, which is a mitochondrial
NAD kinase. These PheWAS results would suggest that
RMR is a complex phenotype, and the genetic underpin-
nings of this trait share some modest effects with other
metabolic and anthropometric traits.
Evaluation of obesity-related genes for association with

RMR suggested a role for variants in PLA2G6, NEGR1,
and NRXN3 (Table S2 (in Additional file 1)). Each of
these genes had multiple variants nominally associated
with RMR. All of these genes are well established with
regard to associations with BMI and obesity [56–58].
PLA2G6 is expressed most in the thyroid, while NRXN3
and NEGR1 have expression patterns predominantly in
brain (frontal cortex, cerebellar hemisphere (both genes),
cerebellum (NRXN3), and cortex (NEGR1)).

GPGE results implicated five established genes related
to obesity, body composition or glucose metabolism
(Table 5). Two of the results, BARX1 (BARX homeobox
1) and PTPDC1 (protein tyrosine phosphatase domain
containing 1), represent a single associated locus for
waist-to-hip ratio from the most recent GIANT consor-
tium meta-analysis [34], while ZNF169 (zinc finger pro-
tein 169) was implicated at a suggestive p-value with
BMI in East Asians [59]. Further, variants near FAR1
(fatty acyl-CoA reductase 1) have been previously associ-
ated with bone mineral density in Hispanic children
[25], and BCL9 has recently been identified with type 2
diabetes in aboriginal Australians [60]. FAR1 has also
been shown to be expressed differently between visceral
and subcutaneous adipose tissue in colorectal cancer
patients [61]. Of these GPGE association results, BARX1,
ZNF169 and FAR1 were all significant in brain regions,
which is consistent with a popular hypothesis that the
central nervous system regulation of energy balance plays
a major role in the development of obesity [62–65].
The most significant GPGE association of RMR was

with the UHMK1 (U2AF homology motif (UHM) kinase
1) gene. Genetic variants in UHMK1 have been associated
with schizophrenia [66–68], and gene expression evalua-
tions have been performed in mouse brain [69] with par-
ticular interest in pharmacological treatment effects [70].
Interestingly, both UHMK1 and ACP6 (acid phosphatase
6, lysophosphatidic) have been implicated in cerebral vi-
sion impairment from exome sequencing [71]. ACP6
GPGE was significant in several brain regions (cerebellar
hemisphere, cerebellum, cortex, frontal cortex, hippocam-
pus, and Putamen basal ganglia), the pituitary and thyroid
glands, several tissues in the gastrointestinal system
(stomach, small intestine, sigmoid and transverse sections
of the colon, as well as muscularis and gastroesophageal
junction of the esophagus). Among the top results, brain
regions were somewhat over-represented (13/39 results =
0.33) compared to the number of tissues evaluated (10/40
tissues = 0.25). Three of the results were in the pituitary
gland (SPATA7, ACP6, and GPX8) which has implications
with growth hormone levels, implying a relationship with
energy balance in children.
Few other studies have analyzed genetic variants

underlying RMR and related phenotypes measured by
whole-room calorimetry, particularly in children, on a
genome-wide scale. Due to the novel design, we consid-
ered a separate evaluations of children, however, the sam-
ple size (and therefore power) is reduced dramatically in
this case. We have included the results for children alone
in the supplementary material (Figures S6–S9; Table S3
(in Additional file 1)), but with a sample size of only 112,
we do not feel confident in these results as a stand-alone
analysis. The Viva La Familia study, did evaluate genome-
wide genetic associations with obesity-related traits [25];

Fig. 2 Gene-based analysis for resting metabolic rate
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however, those did not replicate here (data not shown).
Likely reasons for the lack of replication is the vastly differ-
ent genotyping arrays with little overlap, but this is also
potentially contributed to by the difference in ethnic origin
and the small sample size of this study. Additionally, the

phenotypes assessed were not entirely consistent between
the two studies, with the GWAS in Viva La Familia evaluat-
ing total and sleep EE rather than the RMR phenotype con-
sidered here, though both studies made use of whole-room
indirect calorimetry. Basal energy expenditure was assessed

Table 5 Genetically predicted gene expression results from MetaXcan with RMR genetic association data

Gene Z-score P-value r2 Tissue

UHMK1 4.01 5.96E-05 0.056 Nerve-Tibial

ZNF506 −3.84 0.00012 0.021 Skin-SunExposed

B3GNT6 −3.80 0.00014 0.18 Brain_Hippocampus

RTN2 3.74 0.00018 0.028 Brain_Hypothalamus

ZNF682 −3.72 0.00019 0.025 Colon_Sigmoid

RAB5C −3.67 0.00024 0.023 Heart_AtrialAppendage

UBN2 −3.66 0.00026 0.048 Artery_Aorta

GALC 3.65 0.00026 0.051 Brain_Cortex

SPATA7 −3.65 0.00026 0.012 Pituitary

ZC3HAV1L 3.64 0.00027 0.062 Stomach

FAR1 −3.63 0.00028 0.015 Brain_Anteriorcingulatecortex

PVALB −3.62 0.00030 0.026 Artery_Aorta

PVALB 3.62 0.00030 0.079 Brain_CerebellarHemisphere

FMO5 3.55 0.00038 0.13 Adrenal

ACP6 3.55 0.00038 0.00037 Brain_CerebellarHemisphere

ACP6 3.55 0.00038 0.47 Brain_Cortex

ACP6 3.55 0.00038 0.39 Brain_FrontalCortex

ACP6 3.55 0.00038 0.23 Brain_Hippocampus

ACP6 3.55 0.00038 0.43 Brain_Putamen_basalganglia

ACP6 3.55 0.00038 0.36 Cells_fibroblasts

ACP6 3.55 0.00038 0.26 Colon_Sigmoid

ACP6 3.55 0.00038 0.40 Colon_tranverse

ACP6 3.55 0.00038 0.34 Esophagus_GastroesophagealJunction

ACP6 3.55 0.00038 0.37 Esophagus_Muscularis

ACP6 3.55 0.00038 0.57 Pituitary

ACP6 3.55 0.00038 0.12 SmallIntestine

ACP6 3.55 0.00038 0.39 Stomach

ACP6 3.55 0.00038 0.48 Testis

ACP6 3.55 0.00038 0.52 Thyroid

BCL9 3.55 0.00038 0.0050 WholeBlood

ACP6 3.53 0.00041 0.17 Brain_Cerebellum

RP11-345 J4.3 −3.52 0.00043 0.052 Artery_Tibial

HABP2 −3.49 0.00048 0.012 Esophagus_GastroesophagealJunction

KRT38 3.49 0.00048 0.28 WholeBlood

GPX8 −3.49 0.00048 0.00093 Pituitary

PPAP2A −3.49 0.00048 0.0018 Spleen

ZNF169 −3.49 0.00048 0.031 Brain_Cerebellum

BARX1 3.49 0.00048 0.021 Brain_Cortex

PTPDC1 −3.49 0.00048 0.040 Esophagus_GastroesophagealJunction

Hellwege et al. BMC Obesity  (2017) 4:12 Page 8 of 11



in their study [16], utilizing the same method as our RMR
measure; however, this phenotype characteristic was not
included in their GWAS publication.
Previous linkage scans for RMR have implicated regions

16q22.312, 3q26.114, and 11q23-q2413 which do not
overlap with the regions identified in this study. The re-
gion on chromosome 16 harbors many variants implicated
in a wide variety of disorders, including multiple sclerosis
[72], breast cancer [73], hypospadias [74], and atrial
fibrillation [75–77], among others, though none are dir-
ectly related to energy balance or obesity. Another region
detected in the Quebec Family Study, 22q12.314, does
harbor the gene APOL3. One SNP in this gene was
nominally associated with RMR in the present study,
although not reaching robust statistical significance
thresholds (p-value = 3.0 × 10−4). Other genes in this
region have also been implicated in differential adipose
deposition (LARGE [78] and HMGXB4 [34]) and fat mass
(near ODF3B) [25], and electronic medical record-
defined BMI in children (APOL5) [79], suggesting that
our study has detected a biological relationship with
energy balance or storage in this region, consistent
with these previous studies.

Conclusions
In summary, this is the first large-scale genetic association
study of RMR in African- and European-American
children and adults incorporating GPGE data. The results
suggest that several obesity and body composition-related
loci are also associated with RMR, and highlight the
role of PheWAS in evaluating the phenotypic
spectrum associated with selected genetic variants.
Our findings of previously unknown signals may suggest
that RMR is incompletely explained by anthropometrics,
glucose metabolism and energy balance genetic variants.
Although large-scale association studies combining ac-
curate RMR measurements with comprehensive phe-
notyping are challenging, their results might provide
information for research focused on precision medicine
in individuals. In conclusion, our results suggest that
RMR may be partially independent of anthropometric
phenotypes, and that genetic evaluation of this trait pro-
vides evidence supporting a role for RMR in obesity
pathophysiology.
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