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Moderate intensity physical activity prevents
increased blood glucose concentrations, fat pad
deposition and cardiac action potential
prolongation following diet-induced obesity in a
juvenile-adolescent rat model
Alannah van Waveren1*, Mitch J Duncan2, Fiona R Coulson3 and Andrew Fenning1,3
Abstract

Background: Both obesity and a lack of physical activity have been associated with an elevated risk of cardiovascular
disease (CVD). The incidence of obesity is increasing, especially in juvenile-adolescents. While there is limited research
examining the chronic effects of obesity in adolescent humans and animal models of this condition, little is also
known concerning how moderate physical activity might prevent or attenuate secondary cardiovascular complications
induced by obesity during adolescence. We investigated the effects of diet-induced obesity (consisting of a high-fat,
high-carbohydrate diet (HFHC)) on biometric indices, vascular and airway function, cardiovascular function, systemic
oxidative stress and markers of inflammation in a juvenile-adolescent rodent model. Four groups were used: control
(CON), physical activity (PA) treated, HFHC and HFHC + PA (n = 16 per group). HFHC feeding started at 4 weeks of age
for a period of 12 weeks. Physical activity treatment was initiated (PA and HFHC + PA groups) when the animals were
8 weeks of age, for 8 weeks.

Results: Physical activity in juvenile-adolescent healthy rats showed no change in comparison to the CON group in all
experimental parameters except for increases in lipid peroxidation, decreases in inflammatory cytokines, improvements
in vascular reactivity and decreased atrial responses to positive chronotropic agents. The HFHC animals were mildly
hyperglycemic, hypertensive, displayed renal hypertrophy and showed increased retroperitoneal fat pad deposition
compared to the CON group. HFHC + PA rats were also hypertensive, however showed improvements in cardiac
electrophysiology, body weight, fat pad deposition and inflammatory signaling, in comparison to the HFHC fed rats
and CON animals.

Conclusion: In conclusion, in a juvenile-adolescent animal model of diet-induced obesity engagement in physical
activity is beneficial in reducing the inflammatory effects of obesity.
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Background
In recent decades the prevalence of overweight youth and
obesity in humans has increased [1,2]. Juvenile onset
obesity has been associated with adverse changes in car-
diovascular risk in both animals and humans ([3-5]).
Animal studies show that cardiorespiratory function and
blood pressure are adversely altered following juvenile-
onset obesity in comparison to older models of obesity
[6-8]. In addition, following high fat feeding that induced
obesity; blood pressure in the young rats became signifi-
cantly elevated [6,8]. This increase resulted in a more
advanced metabolic syndrome in contrast to the older
animals fed a similar diet, over a similar time period [6,8].
Obesity has also been shown to adversely alter respiratory
physiology, including a heightened demand for ventila-
tion, diminished respiratory compliance, elevated work of
breathing and respiratory muscle inefficiency [9-11].
Adipose tissue plays a key role in the secretion of many

pro-inflammatory cytokines [12-14] with higher body fat
deposits promoting an excess secretion of adipokines [15].
These released adipokines promote a raft of systemic effects
including enhanced appetite, insulin resistance, altered
bone metabolism, altered endocrine and reproductive func-
tion, decreases in pulmonary function and an increased risk
of CVD [12-14,16,17]. Therefore, a reduction in adipose
tissue generates an anti-inflammatory state, which reduces
CVD risk. Reduction in adipose tissue is typically achieved
by increases in physical activity, improved dietary habits
or a combination of both.
Physical activity has been defined as by the World

Health Organization as any bodily movement produced
by skeletal muscles that requires energy expenditure [18].
Exercise, also defined by the World Health Organization,
is a subcategory of physical activity defined as being
planned or structured and can be repetitive [18]. Exercise
is assumed to have a final objective being the improve-
ment or maintenance of physical fitness [18]. Physical ac-
tivity in daily life includes exercise and can be categorized
into other activities which involve bodily movement and
are done as part of playing, occupation, active transporta-
tion, household chores and sports [18].
The health benefits of regular physical activity occur via

many pathways including improved regulation of meta-
bolic irregularities, blood pressure, glucose clearance, myo-
cardial energetics, coronary artery diameter and vasomotor
tone [19,20]. Physical activity has also been found to have
anti-inflammatory effects linked to a reduction in risk of
atherosclerosis and CVD [19] through decreases in the
release of pro-inflammatory cytokines [21-23]. Whereas,
weight-loss associated with physical activity confers a
significant health benefit and has been shown to im-
prove endothelial dysfunction and decrease systemic in-
flammation [24]. Studies in rodents showed that swimming
for 2 hours/day, 5 days/week for 6 weeks reduced insulin
resistance induced via a high fat diet [25]. Similarly,
treadmill-running studies using rats, where animals com-
pleted 13 weeks of treadmill-running 5 days/week demon-
strated that physical activity decreased hypertension caused
by diet-induced obesity [3]. Whilst these studies have dem-
onstrated that physical activity can reduce markers of car-
diometabolic, CVD risk following diet-induced obesity in
adult animal models, it is unknown how physical activity
impacts CVD risk in youth.
The aims of this study were to 1) examine if diet-induced

obesity causes metabolic syndrome and associated sec-
ondary CVD complications such as elevated blood pres-
sure and blood glucose, depressed cardiovascular and
respiratory function and enhanced systemic inflammation
and oxidative stress in a juvenile-adolescent rat model and
2) to examine if physical activity can reduce these adverse
changes.
Methods
Animals and animal care
All experimental procedures were approved by the
CQUniversity Animal Ethics Research Committee (ap-
proval A10/11-265) and were conducted in accordance
with the National Health and Medical Research Council
(NHMRC) guidelines. Male Wistar rats were randomized
into one of four experimental groups: 1) control (CON),
2) physical activity (PA), 3) high fat/high carbohydrate
(HFHC) and 4) high fat/high carbohydrate combined with
physical activity (HFHC + PA). Animals were started treat-
ment at the juvenile age of 4 weeks [26,27]. HFHC was
initiated at 4 weeks of age for a period of 12 weeks. Phys-
ical activity was initiated (PA and HFHC+ PA) when the
animals reached 8 weeks of age for a period of 8 weeks.
All animals were euthanized at 16 weeks of age. CON and
PA animals were fed standardized rat and mouse nuts
(Norco Stockfeeds; South Lismore, NSW, Australia) and
were exposed to room air.
Physical activity protocol
Groups subjected to physical activity (PA and HFHC +
PA), performed 30 minutes of moderate intensity exer-
cise per day, five days per week for 8 weeks. This daily
duration and intensity is consistent with the level of
physical activity considered to confer health benefits in
humans [28,29]. Studies have shown that a moderate in-
tensity of physical activity for the rodent model is equiva-
lent to 0.8 km/hour on a modified treadmill (AccuScan
Instruments, Columbus, Ohio, USA), and is sufficient
to induce physiological adaptations in cardiovascular
function and biochemical parameters [30,31]. HFHC and
CON groups were not subjected to physical activity,
however where exposed to the same condition inside the
treadmill unit.
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HFHC diet-induced obesity model
A modified HFHC diet [32,33] was prepared by Specialty
Feeds (Glen Forrest, WA, Australia) and consisted of 45.3%
digestible energy from lipids and 34.3% from carbohydrates.
The HFHC diet pellets contained casein (233 g/kg), fruc-
tose (175 g/kg), lard (207 g/kg), soya bean oil (29 g/kg),
cellulose (58 g/kg), wheat starch (118 g/kg), dextrinized
starch (117 g/kg), DL methionine (3.5 g/kg), calcium
carbonate (6.4 g.kg), sodium chloride (2.6 g/kg), AIN93
trace mineral (1.6 g/kg), potassium citrate (19.2 g/kg), di-
calcium phosphate (15.1 g/kg), potassium sulphate (1.6 g/kg),
choline chloride 75% (1.3 g/kg) and AIN93 vitamins
(12 g). Digestible energy was calculated at 19.5 MJ/kg. The
CON and PA did not receive the modified HFHC diet but
standard rat chow. kJ consumption was calculated by
weighing food and water intake daily. The consumption
was then averaged based on the number of rats present
in each cage and multiplied by kJ content in the food
or water that was eaten.

Body mass, heart rate and systolic blood pressure
Systolic blood pressure and heart rate readings were taken
0, 4, 8 and 12 weeks. Systolic blood pressure and heart
rate were measured via tail cuff plethysmography as out-
lined previously [34]. Body mass was measured weekly for
all groups.

Terminal assessments
At completion of the 12-week treatment regime, all rats
were euthanized using a 0.2 ml/kg i.p. injection of so-
dium pentobarbitone (375 mg/ml). Following euthanasia,
the abdominal and chest cavities were opened and a
5 mL blood sample was collected from the abdominal
vena cava. Internal organs including the heart, kidneys,
liver, spleen and fat pads were removed and weighed.

Glucose, 4-HNE, NO, IL-6 and IL-1B
Blood glucose concentrations for each group were mea-
sured immediately following euthanasia using a blood
glucose monitor (Medisense, Abbott Laboratories) and
reported in mmol/L. All other biochemical measurements
were performed using serum prepared from whole blood
collected in a serum separator tube and allowed to clot
before being centrifuged. Samples were then centrifuged
for ten minutes at 14000 rpm and the supernatant re-
moved and stored at −80°C to prevent sample degrad-
ation. To assess 4-hydroxynonenal (4-HNE) levels for
each animal, serum samples were used in conjunction
with a Cell Biolabs’ Oxiselect™ HNE adduct ELISA kit
(Catalog Number STA-338). Nitric Oxide (NO) levels were
assessed using a NO (total) Detection Kit (Catalog Number
ADI-917-020). Assessments of serum interleukin-1β
(IL-1β) concentrations were made through the use of a
R&D Systems Quantikine Rat IL-1β/IL-1 F2 Immunoassay
(Catalog Number RLB00) with serum interleukin-6 (IL-6)
concentrations determined through the use of R&D Sys-
tems Quantikine Rat IL-6 Immunoassay (Catalog Number
R6000B).

Vascular reactivity in isolated tissues
Thoracic aortic rings isolated from each rat were cleared
of any fat and connective tissue before being suspended
in 25 mL organ baths stabilized at 37°C with a continu-
ously supplied with carbogen (5% CO2 and 95% O2) gas
bubbled through tyrodes solution (NaCl 136.9, KCl 5.4,
MgCl2 1.05, NaH2PO4 0.42, NaHCO3 22.6, CaCl2 1.8,
glucose 5.5, ascorbic acid 0.28, EDTA 0.1 all in mM).
Each segment of thoracic aorta had a pre-set resting ten-
sion of 10 mN and following a thirty minute equilibra-
tion period, cumulative concentration response curves
(CRC) to noradrenaline (NA), acetylcholine (ACh) (NA
pre-contraction) and sodium nitroprusside (Nano) (NA
pre-contraction) were established with any fluctuation to
the preset tension recorded using (Grass FT03) trans-
ducers connected to Chart software (21). Vascular re-
activity in isolated pulmonary arteries was assessed using
a 4-bath wire-myograph system (Danish Myograph
Technologies, Denmark). Pulmonary arteries were dis-
sected from the base of the heart and threaded with
40 μm stainless steel wire while bathed in cold Tyrodes
buffer and gassed with carbogen before being trans-
ferred to the myograph chambers at 37°C. Once the
pulmonary tissues had equilibrated for 20 minutes they
were normalized using inbuilt normalization protocols
of LabChart Pro 7 software (ADInstruments). Following
successful normalization, tissues were rested at pre-load
tension 10 mN, for 20 minutes before being contracted
with 10 mM KCL and relaxed with a 1e-5 M concentra-
tion of ACh. The pulmonary arteries were washed regu-
larly for 30 minutes with fresh buffer solution before
the commencement of the same CRC’s to the thoracic
aortic rings.

Assessment of cardiac electrophysiological changes
The papillary muscle was excised from the left ventricle
and a stainless steel hook inserted through the superior
end. The papillary muscle was then placed between two
platinum electrodes in a 1.0 mL experimental chamber
filled with Tyrodes physiological salt solution (37°C; aer-
ated with carbogen) and fixed into position with a stain-
less steel pin (21). The papillary muscle was then slowly
stretched to a maximum pre-load (5 mN) and then was
then stimulated using a Grass SD-9 stimulator and
contractions were induced at 1 Hz, with a pulse width of
0.5 msec and stimulus strength 20% above threshold.
After a five-minute equilibration period, the papillary
muscle was then impaled by a glass electrode filled with
potassium chloride 1 M (filamented borosilicate glass,
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outer diameter 1.5 mm, tip resistance of 5-15 mΩ when
filled with 3 M KCL), using a silver/silver chloride refer-
ence electrode. The electrical activity, which was recorded
in mV, of a cell was recorded following a further 25 minute
equilibration period with a Cyto 721 electrometer was con-
nected to an ADInstruments (Chart 7) recording system.

Assessment of pacemaker changes
The right atria were isolated from each rat and were
cleared of any fat and connective tissue was removed
before being suspended in 25 mL organ baths stabilized
at 37°C, filled with Tyrodes physiological salt solution
(aerated with carbogen). Each atrium had a thirty-minute
equilibration period, then cumulative concentration re-
sponse curves (CRC) to isoprenaline (ISO) and calcium
chloride (CaCl) were added with any fluctuation to medi-
ate rate response of recorded using (Grass FT03) trans-
ducers connected to Chart software.

Assessment of airways function in isolated sections of
trachea and bronchioles
Trachea rings isolated from each rat were cleared of any
fat and connective tissue before being suspended in
25 mL organ baths [35] stabilized at 37°C supplied with
carbogen gas bubbled through modified KHB (NaCl
119.1, KCl 4.75, MgSO4 1.19, KH2PO4 1.19, NaHCO3

25.0, glucose 11.0 and CaCl2 2.16 all in mM) with added
propranolol to replicate biological parameters. Each seg-
ment of trachea had a preset resting tension of 1 g and
following a 30-minute equilibration period, CRC to carba-
chol (CAR), 5-hydroxytryptamide (5-HT) and isoprenaline
Table 1 Systemic parameters in the four intervention groups

CON

Body weight (g) 444.8 ± 7.6

Retroperitoneal (g) 7.8 ± 1.1

Subcutaneous (g) 8.3 ± 1.0

Epididymal (g) 8.5 ± 1.0

Mesenteric (g) 7.6 ± 0.9

LV and septum (mg/g of bw) 2.2 ± 0.08

RV (mg/g of bw) 0.5 ± 0.05

Liver (mg/g of bw) 36.9 ± 0.7

Spleen (mg/g of bw) 2.8 ± 0.1

Kidneys (mg/g of bw) 7.6 ± 0.2

4-HNE (mmol/L) 0.4 ± 0.2

IL-6 (pg/mL) 770.0 ± 91.9

IL-1β (pg/mL) 105.4 ± 13.6

Nitrate/Nitrite (μmol/L) 22.6 ± 1.2

Glucose (mmol/L) 12.0 ± 1.1

Data expressed as Mean ± SEM; n = 16 for all groups. CON, control; PA, physical acti
high-carbohydrate fed and physical activity treated. *P < 0.05 vs CON, †P < 0.05
(ISO) were completed. Pulmonary responses in isolated
bronchioles were assessed via a 4-bath wire-myograph sys-
tem (Danish Myograph Technologies, Denmark). Second
generation bronchioles were dissected from the lungs and
threaded with 40 μm stainless steel wire while bathed in
cold (10°C) Krebs-Henseleit buffer and gassed with carbo-
gen before being transferred to the myograph chambers at
37°C. Equilibration and normalization procedures were
kept consistent with the pulmonary artery preparations.
CRC were performed using 5-HT, ACh and ISO (ACh
pre-contraction).

Drugs and chemicals
All drugs used in this study (NA, ACh, CAR, 5-HT, ISO
and NaNO) were purchased from the Sigma Chemical
Company, St Louis MO, USA. Serial dilutions of the
drugs were produced using distilled water.

Statistical analysis
Data is expressed as mean ± standard error mean (SEM).
Statistical analysis was performed using two-way ana-
lysis of variance (ANOVA) and students t-test where
appropriate. Results were considered significant when P <
0.05 with analysis carried out using Graphpad Prism v5
(GraphPad Software La Jolla, CA 92037 USA).

Results
Responses following PA
No significant changes were observed in body mass in
comparison to age- matched controls. Similar results
were found in the fat pads and organ masses (Table 1).
PA HFHC HFHC + PA

465.5 ± 8.9 441.1 ± 9.0 422.9 ± 8.0†

7.9 ± 0.6 12.6 ± 1.2*† 9.0 ± 0.7

8.5 ± 0.7 10.1 ± 0.6 8.9 ± 1.3

6.2 ± 0.3 7.6 ± 0.7 7.8 ± 0.5

8.5 ± 0.7 8.2 ± 0.5 7.4 ± 0.4

2.0 ± 0.08 2.1 ± 0.06 2.2 ± 0.08

0.4 ± 0.03 0.5 ± 0.05 0.5 ± 0.02

36.8 ± 0.6 36.6 ± 0.9 37.5 ± 3.0

2.7 ± 0.1 2.7 ± 0.1 2.9 ± 0.1

7.1 ± 0.1 8.2 ± 0.2*† 8.5 ± 0.2*†

10.4 ± 0.9*‡ 3.6 ± 0.8*§ 12.2 ± 1.7*‡

194.3 ± 31.5*‡ 620.0 ± 91.7 417.1 ± 35.6*

49.4 ± 8.8* 67.2 ± 12.0 52.9 ± 3.9*

33.6 ± 2.7 68.8 ± 5.2*†§ 34.5 ± 8.5

11.9 ± 1.0 15.1 ± 0.6*† 12.4 ± 1.0

vity treated; HFHC, high-fat, high-carbohydrate fed; HFHC + PA, high-fat,
vs PA, ‡P < 0.05 vs HFHC, §P < 0.05 vs HFHC + PA.
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PA caused a significant increase (P < 0.05) in lipid per-
oxidation, however a significant decrease (P < 0.05) in
circulating cytokine (IL-6 and IL-1β) was also observed
(Table 1).
Physical activity resulted in an enhanced aortic response

to noradrenaline however the relaxation responses to
ACh and NaN were unchanged (Figure 1A). Whilst not
significant there was a trend that physical activity en-
hanced both the relaxation and contraction responses in
bronchiole tissues (Figure 2).
Physical activity reduced ISO stimulated increases in

heart rate from the right atria (Figure 3A) but did not alter
any cardiac electrophysiological parameters (Table 2).
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Responses following HFHC feeding
HFHC feeding did not increase body mass in the juvenile-
adolescent rats, however the diet did significantly increase
retroperitoneal fat pad mass compared to the CON ani-
mals (Table 1). HFHC feeding also increased kidney mass
but no other organ hypertrophy was observed (Table 1).
There was a significantly increased kJ intake in the

HFHC groups compared to both standard chow fed
animals (CON and PA) (Figure 4). Hypertension was
induced by the HFHC diet with a significant increase of
9% increase after 4 weeks, 14% after 8 weeks and 20%
(P < 0.05) in systolic blood pressure after 12 weeks of
feeding (Figure 5).
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HFHC also showed a significant increase (P < 0.05) in
4-HNE values with no change in IL-6 and IL-1β levels
(Table 1). The animals in this group were characterized
by having significantly higher blood glucose values when
compared to the CON experiments (Table 1).
The action potential duration in the papillary muscles

were found to be significantly (P < 0.05) prolonged in the
HFHC group by 20% at 50% of repolarization and 30%
at 90% of repolarization compared to the CON animals
(Table 2).
HFHC feeding did not significantly alter (P > 0.05) aor-

tic (Figure 1) or respiratory (Figure 2) tissue responses
but did show a significantly reduced right atrial response
to ISO (Figure 3A).

Responses following HFHC feeding and PA
HFHC+PA rats showed a significant decrease (P < 0.05) in
body mass compared to HFHC with a normalized retroperi-
toneal and subcutaneous fat pad mass (Table 1). However,
physical activity was not able to normalize renal hyper-
trophy following HFHC feeding (HFHC + PA) (Table 1).
There was a significantly increased kJ intake in the

HFHC+ PA animals compared to both standard chow fed
groups (CON and PA) (Figure 4). Systolic blood pressure
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was significantly increased by 23% in the HFHC+ PA
group in comparison to the CON group (Figure 5).
The HFHC + PA group showed significantly increased

levels of 4-HNE, IL-6 and IL-1β levels compared to CON
(Table 1). There was no significant difference in blood
glucose levels between HFHC and HFHC+ PA rats or
between HFHC+ PA and CON (Table 1).
Physical activity was able to normalize the prolonged

APD at 50 and 90% of repolarization observed in the
HFHC fed animals (Table 2). Physical activity in the HFHC
fed animals (HFHC + PA) decreased the atrial responses
to the positive chronotropic agent ISO to a similar degree
in PA group (Figure 3).
The HFHC + PA group showed exaggerated reaction

to both relaxation and contraction response curves in
the thoracic aorta and pulmonary arteries (Figure 2).

Discussion and conclusions
Moderate physical activity was able to prevent some of
the maladaptive changes associated with chronic HFHC
feeding in young rats, including, however it did not
prevent an elevation in blood pressure. Non-significant
trends in the data showed some improvement in vascu-
lar contractile responses to noradrenaline. Electrophysio-
logical function at 50% and 90% of the action potential
Table 2 Resting membrane potential (RMP), action
potential amplitude (AMP), action potential duration at
20% (ADP20), action potential duration at 50% (ADP50)
and action potential duration at 90% (ADP90) of
repolarization

CON PA HFHC HFHC + PA

RMP −69.5 ± 1.7 −64.1 ± 1.7 −67.1 ± 1.2 −62.4 ± 1.8*

APA 66.2 ± 2.8 65.6 ± 2.7 68.5 ± 2.1 64.3 ± 2.8

APD20 23.6 ± 0.5 24.5 ± 0.3 25.6 ± 0.7 23.9 ± 0.6

APD50 32.2 ± 1.4 34.0 ± 1.6 38.6 ± 1.4* 33.2 ± 1.1‡

APD90 70.6 ± 5.8 77.2 ± 0.4 91.9 ± 3.9*† 77.9 ± 4.2‡

Data expressed as Mean ± SEM; n = 16 for all groups. *P < 0.05 vs CON, †P < 0.05
vs PA, ‡P < 0.05 vs HFHC.
duration was significantly increased by HFHC feeding,
With the HFHC + PA group values not significantly dif-
ferent to the CON tissues. Moderate intensity physical
activity in young healthy rats (PA group) produced the
typically expected changes of a reduction in systemic
inflammation and maintenance of body weight and systolic
blood pressure similar to CON values. In contrast, juvenile-
adolescent normotensive rats fed a HFHC diet were mildly
hyperglycemic, hypertensive and showed increased renal
hypertrophy. Hearts from HFHC fed animals showed
significantly prolonged action potentials with systemic
increased lipid peroxidation as a common mediator of the
metabolic syndrome. The presentation and degree of dam-
age was not as large as reported in other studies, which
may be due to the younger age of the animal model and
the duration of HFHC feeding [32,36,37].
In this study, there was no significant gain in body

mass in the HFHC group, despite an excess in kilojoules
consumed compared to the CON animals. The amount of
weight gain in the HFHC group observed in the current
study is similar to a study that used a high fat diet over
12 weeks [38]. However, longer feeding periods (16 weeks)
elucidated a larger weight gain response in HFHC fed
animals [32]. Although not measured in the current study
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the weight gain may have been in relation to leptin
resistance and appetite regulation. Leptin is an adipocyte-
derived peptide, the production of which is increased in
patients with obesity [39]. A recent study examined a
model of diet-induced obesity and the response to leptin
in several stages [36]. In the middle-stage (about 8 weeks),
food intake reduced when the animal had an increase in
leptin production and still retained central leptin sensiti-
vity [36]. The animals seemed to control the rate of excess
fat gain by significantly reducing food intake, however,
despite the hypophagia, excess fat still accumulated at a
reduced rate with apparent gains in energetic efficiency at
least partially preventing this regulatory attempt [36].
However, in the later stages (4 months of high-fat feeding),
the energy intake of the high-fat fed mice increased by
14.6% over the control fed animals, accompanied by a
reduction of central leptin sensitivity [36]. Clearly, the
increase in energy consumption of the HFHC diet in this
study promoted changes in adipose deposition causing clas-
sical indicators of the metabolic syndrome, increased blood
glucose and blood pressure, without excessive weight gain
in these younger animals.
Although overall body mass was not significantly

increased in the HFHC animals, there was a significant
increase in retroperitoneal fat pad weight in the HFHC
fed animals. This abdominal fat, has been shown to have
a direct correlation with insulin resistance, and may be a
better indicator of obesity related complications, than
overall body mass [25,40-44]. HFHC has shown to cause
adverse cardiovascular changes in rodent models as well
as in humans [32,37,45]. HFHC feeding in humans, rats
and pig models has been shown to cause adverse cardiovas-
cular changes including coronary endothelial dysfunction,
vascular oxidative stress, hypertension and cardiomyocyte
hypertrophy [3]. Although overall body mass was not
decreased in the HFHC + PA animals retroperitoneal
and abdominal fat mass was reduced which may offer
cardiometabolic benefits despite the lack of overall
reduction in body mass. Although the program of physical
activity was unable to significantly reduce overall body
mass, retroperitoneal and abdominal, fat mass was reduced
and clearly conferred cardiometabolic benefits [46,47]. It
seems that overall body weight reduction may not be the
most reliable indicator of the beneficial effects of physical
activity [25].
Kidney hypertrophy was observed in the HFHC group,

with no other significant changes in other organ masses.
In this study, physical activity, was unable to reduce the
increase in mass observed in kidney weight, caused by
the HFHC diet. With hypertension thought to be a leading
cause of renal disease, it is not surprising that many stu-
dies have tried to find the mechanism behind this effect.
Studies showing that obesity-induced hypertension in
dogs is associated with a shift of renal pressure natriuresis
[48] and that fructose-induced metabolic syndrome is also
associated with renal disturbances characterized by renal
hypertrophy [49,50], arteriolopathy, glomerular hyperten-
sion, and cortical vasoconstriction [49]. The increase in
kidney mass may potentially be due to the mild hyperten-
sion observed in the HFHC fed group.
Hypertension is one of the hallmarks of the metabolic

syndrome and is induced by fructose and HFHC feeding
[32,51]. The animal model of diet-induced obesity elicits
an increase in systolic blood pressure in as little as four
weeks [52,53]. In the present study, a significant increase
in systolic BP was observed following 8 weeks of the
HFHC diet and continued to increase until 12 weeks,
similar to other studies [3,52,53]. One of the benefits of
physical activity is a reduction in blood pressure [54,55],
which was not observed in either of the physical activity
groups in this study. This result is in disagreement with
other findings [3]. One study showed that 13 weeks of
physical activity caused a significant decrease in BP
following diet-induced obesity in rats [3]. The length of
physical activity treatment (8 weeks) in the current study
may not have been long enough to attenuate the change
caused by the HFHC diet. The speed and pace used in
the current study in normal rats does induce improved
left ventricular functional performance over 6–12 weeks
period [30]. A significant decrease was not seen in sys-
tolic BP, potentially due to it not yet being stabilized, al-
ternatively BP may have stabilized at a level that was not
significantly lower. The findings in this study are sup-
ported by the isolated vessel studies, which showed no
change in aortic dilation responses after physical activity.
Other studies showing that cardiovascular damage and
steady-state hypertension by diet-induced obesity was
achieved only after the 16 weeks of feeding [32,53].
HFHC feeding showed a trend in decreasing inflam-

matory cytokine levels both in agreement [40,44] and
contrast to previous studies [21,32,37,42]. These con-
trasting findings may be related to systemic inflamma-
tion as an expression of advanced obesity and insulin
resistance which may not be present in animals treated
for 12 weeks [44]. However physical activity significantly
decreased IL-6 and IL-1 β concentrations compared to
the CON and HFHC fed groups. Animal studies have
shown that cytokine expression is decreased in a phy-
sical activity model, and it was hypothesized that this
may occur due to increased utilization of circulating
fatty acids [42]. In addition, physical activity can reverse
the increased levels of pro-inflammatory cytokine expres-
sion correlated to increased body mass, despite continued
consumption of a high fat diet [42]. These changes per-
sisted even though the high fat diet/physical activity mice
had no significant decrease in body weight compared to
the control group [42]. A recent study in a physical acti-
vity treated obese rat model found there was reduction in
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cardiomyocytes with inflammatory infiltrate in compari-
son to inactive obese rat model [56].
Oxidative stress originates in the mitochondria from

reactive oxygen and reactive nitrogen species and has
been linked to most of the key steps in the pathophy-
siology of CVD [57]. Our results showed a significant in-
crease in this measure in the HFHC animals compared
to the CON group. Interestingly, it was also to be signifi-
cantly increased in our PA group and HFHC + PA group
compared to our CON and HFHC group. While the
HFHC diet increased lipid peroxidation, physical activity
increased lipid peroxidation even further. Physical activ-
ity has been shown to induce oxidative stress partially
through increased mitochondrial turnover, however with
this is an adaptation or up regulation of oxidant defenses
[58,59]. This increase in oxidative stress seen is only an
issue when it is in response to other maladaptive pro-
cesses like diet-induced obesity [25,60].
The potential for cardiac arrhythmia development was

increased in the young HFHC fed rats as demonstrated by
a significant prolongation of the cardiac action potential.
It has been found that in both obese and control rats that
the four major ionic membrane currents responsible for
controlling action potential duration are similar [61]. This
suggests that prolonged action potential duration seen in
HFHC animals was due to a different mechanism. One
hypothesized theory is the absence of leptin in these ani-
mals on the ventricular sodium calcium exchange current.
It has been shown that leptin receptor expression is down
regulated in the hearts of obese animals compared to nor-
mal fed control animals [61]. Papillary muscles from the
high fat diet fed rat hearts showed higher basal and
maximum forces but a decreased recovery after a higher
workload [62]. The underlying mechanism which links
diet-induced obesity to the progression of mild cardiac
hypertrophy is unclear [62]. It is hypothesized that
obesity promotes pathological cardiac remodeling with
left ventricular systolic dysfunction and an increase in
myocardial stiffness, which, in turn, is probably related to
afterload elevation and cardiac fibrosis [63]. Although
physical activity was not able to completely reduce the
prolonged action potential duration at both 50% and 90%
following chronic HFHC feeding, it was able to signifi-
cantly attenuate this increase. Changes seen in blood
glucose, fat mass and inflammatory signaling were po-
tential factors for this improvement but also improved
calcium handling leading to increased cardiomyocyte
contractility [30].
HFHC feeding was shown to cause a decreased re-

sponse of the right atria to adrenergic stimulation. These
changes have been hypothesized to be driven by ionic
current changes [61]. Typically, expected findings oc-
curred whereby exercise caused a decrease in heart rate
response due to reduction in β-adrenergic receptors in
the right atrium [64]. This also occurred during the
HFHC + PA group and was a healthy adaptation.
In conclusion, HFHC feeding in young rats induced a

mild metabolic syndrome characterized by elevated BP
and blood glucose, along with kidney hypertrophy, adi-
pocytokine release, oxidative stress and cardiac action
potential prolongation. Changes in vascular and respira-
tory tissues responses were minimal and linked to the
juvenile-adolescent age of the experimental model. Phy-
sical activity in the young HFHC fed animals induced
improvements in CVD risk by reducing components of
the metabolic syndrome including a reduction in lipid
peroxidation and cardiac action potential duration,
which was believed to be mediated by a reduction in
systemic inflammation.
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