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Abstract

Background: Reports on alterations in somatic neural functions due to non-diabetic obesity, a major risk factor for
diabetes, are few and still a matter of debate. Nevertheless, to our knowledge, reports lack any comments on the
type of somatic nerve fibers affected in non-diabetic obesity. Therefore, this study aimed to find out the alteration
in somatic neural functions in non-diabetic obese persons if any.

Methods: The study was conducted on 30 adult non-diabetic obese persons (mean age 32.07 ± 7.25 years) with
BMI > 30 Kg/m2 (mean BMI 30.02 ± 2.89 Kg/m2) and 29 age- and sex-matched normal weight controls (mean age
30.48 ± 8.01 years) with BMI: 18–24Kg/m2 (mean BMI 21.87 ± 2.40 Kg/m2). Nerve conduction study (NCS) variables of
median, tibial and sural nerves were assessed in each subject using standard protocol. The data were compared by
Mann Whitney ‘U’ test.

Results: In comparison to normal weight persons, obese had lower compound muscle action potential (CMAP)
amplitudes of right median [9.09(7.62–10.20) Vs 10.75(8.71–12.2) mV, p = 0.025] and bilateral tibial nerves [Right: 8.
5(7.04–11.18) Vs 12.1(10.55–15) mV, p < 0.001 and left 9.08(6.58–11.65) Vs 13.05(10.2–15.6) mV, p = 0.002].
Furthermore, obese persons had prolonged CMAP durations of right and left median [10.5(9.62–12) Vs 10(8.4–10.3)
ms, p = 0.02 and 10.85(10–11.88) Vs 10(9–10.57) ms, p = 0.019] and right tibial [10(9–11) 8.5(7.92–10) ms, p = 0.032]
nerves. Sensory NCS (sural nerve) also showed diminished sensory nerve action potential (SNAP) amplitude [16(12.
08–18.21) vs 22.8(18.3–31.08) μV, p < 0.001] and prolonged duration. However, onset latencies and conduction
velocities for all nerves were comparable between the groups.

Conclusion: This study documents subclinical peripheral nerve damage in non-diabetic obese with abnormal NCS
parameters; shorter amplitudes and prolonged CMAP and SNAP durations. The reduced amplitudes of mixed and
sensory nerves might be due to decreased axonal number stimulation or actual decrease in number of axonal
fibers, or defect at NMJ in non-diabetic obese. Prolonged durations but normal onset latencies and conduction
velocities strongly suggest involvement of slow conducting fibers.
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Background
Obesity is a medical condition with a multifactorial
etiology. Due to worldwide prevalence of this dis-
order, it is increasingly considered one amongst the
major public health problems, with at least 2.8 mil-
lion people dying each year as a result of being over-
weight or obese. Moreover, obesity has become
common place in many low- and middle-income

south Asian countries, including Nepal and
Bangladesh with prevalence being 10% and 8.9% re-
spectively. There are many reports suggesting that
obesity causes various alterations in hemodynamic
and metabolic systems which affect the functions of
many organs and the systems [1, 2].
Obesity is a major risk factor for diabetes. There

are substantial reports and established findings on al-
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terations in somatic neural functions due to diabetes
[3]. However, only a few have reported functional al-
terations in somatic neurons merely due to obesity
[4]. Further in our geographical setting, reports lack
commenting on somatic nerve functions in non-
diabetic obese. Therefore, the effects of obesity on
somatic neuronal functions are controversial and need
to be explored. To our knowledge, reports lack any
comments on the type of somatic neural fibers af-
fected most while alterations in somatic neural func-
tions due to non-diabetic obesity.
Somatic sensory and motor nerve conduction stud-

ies (NCS) were used to assess their structural and
functional alterations [5, 6]. Thus, the study aimed
to investigate motor (MNCS) and sensory (SNCS)
nerve conduction in non-diabetic obese patients to
examine the relevance for the development of sub-
clinical peripheral nerve damage along with explor-
ing the possible order or type of neural fibers
involvement. Further, study can be extended to
investigate the cause for alterations in neural

functions, if any, which may be due to metabolic or
structural alterations in neurons as a result of
obesity.

Methods
Subjects
This cross-sectional comparative study was con-
ducted over a year (2011–2012) in the Neurophysi-
ology laboratory in the Department of Basic and
Clinical Physiology, B. P. Koirala Institute of Health
Sciences (BPKIHS), Dharan, Nepal. The convenient
sampling was used for the recruitment of the sub-
jects and was selected purposively among the med-
ical staffs and students at BPKIHS having similar
lifestyle to avoid the effect of amount, type and in-
tensity of physical activity on nerve response. Thirty
non-diabetic obese individuals (Age 32.07 ±
7.25 years) and 29 age- matched normal weight con-
trols (Age 30.48 ± 8.01 years) participated in the
study. The percentage contribution of male and

Table 1 Stimulation and recording sites of motor nerves

Motor Nerve Site of stimulations Recording site (muscle)

Proximal site Distal site

Median Nerve Antecubital fossa Wrist Abductor pollicis brevis

Tibial Nerve Popliteal fossa Medial ankle Abductor Hallucis brevis

Fig. 1 Representative trace of tibial distal and proximal compound muscle action potential
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female was 50% each in obese group, and 53.33%
male and 46.66% female was in normal weight
group.
Mean BMI of the obese patients and controls

were (32.02 ± 2.89 Kg/m2) and (21.87 ± 2.40 Kg/m2),
respectively, p < 0.001. Obese was defined (WHO) as
a BMI of over 30, and normal weight was defined
as a BMI of less than 25, i.e., between 18 and
24(kg/m2) [7, 8]. To be included, subjects were re-
quired to be between 18 and 75 years old and they
also had to meet the BMI criteria noted above. In-
formed written consent was taken from all the sub-
jects and they were screened for any history of
drugs/alcohol intake, upper and lower extremity
fractures, the familial history of neuropathy, or
medical illness likely to affect the nerve conduction
study parameters based on clinical history and phys-
ical examinations including detailed neurological as-
sessment. Diabetic persons were excluded from the
study according to American Diabetes Association
criteria (American Diabetes Association, 2003),
which defines a plasmatic basal glucose level higher

than 126 mg/dL as a reliable indicator of diabetes
[9]. The choice of the patients was very selective, to
attribute a potential pathogenetic value to a meta-
bolic alteration typical of the obese patients, repre-
sented by normal blood glucose level. Plasma
glucose level was measured in the clinical labora-
tory, Department of Biochemistry, BPKIHS, Dharan,
Nepal. This study was conducted according to the
guidelines of the Declaration of Helsinki and ap-
proved by the ethical committee, BP Koirala Insti-
tute of Health Sciences, Dharan, Nepal.
Room temperature of the laboratory was main-

tained at the thermo neutral zone i.e., 26 ± 2 °C.
All the required set up was checked before com-
mencing the test. Further, subjects were made
comfortable and familiar with the laboratory set up
and conditions, and were advised to relax com-
pletely during recording. A conventional neuro-
graphic study was performed to measure the NCS
parameters under standard laboratory conditions by
using a Nihon Kohden machine (NM-420S; H36,
Japan).

Fig. 2 F-wave for Median nerve

Table 2 Stimulation and recording sites of sensory nerves

Sensory nerve Method of stimulation Stimulation sites Recording sites

Sural Antidromic Posterior-lateral calf Posterior ankle

Median Orthodromic Index finger Middle of the wrist
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Recording procedures
Anthropometric and blood pressure measurement
Age was recorded in complete years i.e., rounded of
the nearest years. Standing height was recorded
with stadiometer (Prestige brand) by making the
subject stand without shoes and shocks with feet
parallel and pointing forwards on a special platform
to which vertical measuring rod, marked in metric
scale was fixed. Subject was ensured to stand as tall
as possible with positioning head in the Frankfort
plane position (the plane joining lower border of
left orbit and the upper margin of the external
auditory meatus in horizontal position). The head

piece of the stadiometer or the sliding part of the
measuring rod was lowered so that the hair (if
present) was pressed flat. Height was recorded in
cm to the resolution of the height rule (i.e., the
nearest quarter of a cm). Weight of each subject
was taken on balanced beam scale (Dr. Morepen
MS02B Mechanical weighing machine). The scale
was placed on hard floor surface and calibrated
with standardized weights at the beginning and end
of each examining day. The subjects after removing
their heavy outer garments (jacket, coat, trousers,
skirts, wrist watch, mobile from pocket etc.) were
asked to stand in the centre of the platform to

Table 3 Comparison of anthropometric, cardiorespiratory and biochemical variables between obese (n = 30) and normal
weight (n = 29) groups

Variables Normal weight (n = 29)
Mean ± SD

Obese (n = 30)
Mean ± SD

P value

Age, yrs 30.48 ± 8.012 32.07 ± 7.25 0.429

Height, m 1.66 ± 0.10 1.60 ± 0.099 0.038

Weight, kg 60.69 ± 9.43 82.93 ± 11.14 <0.001

BMI, kg/m2 21.87 ± 2.40 30.02 ± 2.89 <0.001

Respiratory rate, cycles/min 16.41 ± 2.87 16.60 ± 2.76 0.801

Pulse rate, beats/min 71.48 ± 8.41 79.17 ± 8.80 <0.001

Systolic blood pressure, mmHg 113.24 ± 11.07 121.20 ± 9.89 0.005

Diastolic blood pressure, mmHg 74.83 ± 10.31 84.97 ± 7.87 <0.001

Fasting blood sugar, mg/dl 85.72 ± 15.36 84.80 ± 17.52 0.830

The bold values in the tables shows the data are statistically significant

Table 4 Comparison of median motor nerve conduction study (NCS) variables between obese (n = 30) and normal weight
(n = 29) groups

Variables Median nerve Normal weight (n = 29)
Median (Q1-Q3)

Obese (n = 30)
Median (Q1-Q3)

p

Latency (ms) Distal Rt. 3.05 (2.65–3.67) 3.10 (3–3.3) 0.766

Lt. 3.15 (2.82–3.57) 3.30 (2.9–3.5) 0.873

Proximal Rt. 7.30 (6.47–8.22) 7.15 (6.9–7.65) 0.543

Lt. 7.35 (6.47–8.05) 7.40 (6.92–7.98) 0.885

Amplitude (mV) Distal Rt. 11.15 (8.54–12.8) 10.05 (8.33–11.80) 0.12

Lt. 10.50 (8.79–13.17) 9.84 (9–11.45) 0.261

Proximal Rt. 10.75 (8.71–12.2) 9.09 (7.62–10.20) 0.025

Lt. 10.30 (8.75–12.42) 8.74 (8.34–10.70) 0.073

Duration (ms) Distal Rt. 10.00 (8.4–10.3) 10.50 (9.62–12) 0.020

Lt. 10.00 (9.42–10.57) 10.70 (9.57–12.00) 0.047

Proximal Rt. 10.00 (9–10.57) 10.85 (10–11.88) 0.019

Lt. 10.05 (9.35–11) 11.00 (10–12) 0.050

Velocity (m/s) Rt. 55.00 (53.27–58.10) 54.45 (51.12–57.4) 0.495

Lt. 56.00 (51.12–60.25) 55.15 (51.47–58.2) 0.862

The bold values in the tables shows the data are statistically significant
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distribute body weight evenly to both feet. The
weight was recorded to resolution of the scale (the
nearest 0.1 kg to 0.2 kg). Body mass index (BMI)
was calculated from the standard formula i.e., BMI
= weight (kg)/height (m2). Blood pressure (BP) was
measured manually using mechanical aneroid sphygmo-
manometer and a quality stethoscope (MDF ® 808 Profes-
sional Aneroid Sphygmomanometer and Stethoscope).
Systolic and Diastolic blood pressure were recorded in sit-
ting upright position after a minimum of five-minute rest,
palpatory was followed by ascultatory method of blood
pressure measurement. BP was double checked for accur-
acy as recommended by AHA (American Heart Associ-
ation) by taking reading with both arms and averaging the

readings. Three readings were taken in the interval of
5 min rest and the average of readings was taken as final
systolic and diastolic blood pressures.

Nerve conduction study
The neurophysiological study consisted of motor
NCS (MNCS) and sensory NCS (SNCS) in median
(mixed), tibial (motor), and sural (sensory) nerves.
Nerve conduction studies were performed using
standard techniques of supra-maximal percutaneous
stimulation with a constant current stimulator and
surface recording electrodes of electromyography on
both extremities of each subject. SNCS was per-
formed orthodromically for median nerves, anti-

Table 5 Comparison of tibial motor nerve conduction study (NCS) variables between obese (n = 30) and normal weight (n = 29)
groups

Variables Tibial nerve Normal weight (n = 29)
Median (Q1-Q3)

Obese (n = 30)
Median (Q1-Q3)

p

Latency (ms) Distal Rt. 3.5 (3.1–4.3) 3.75 (3–4.25) 0.958

Lt. 3.7 (3.15–4.2) 3.6 (3.32–4.1) 0.927

Proximal Rt. 12.45 (11.02–13.05) 12 (11.22–12.68) 0.549

Lt. 12.3 (11.22–13.17) 12.20 (11.22–13.20) 0.756

Amplitude (mV) Distal Rt. 15.60 (12.67–20.6) 13.05 (10.2–16.2) 0.027

Lt. 17.00 (12.82–20.32) 13.6 (8.96–15.78) 0.009

Proximal Rt. 12.1 (10.55–15) 8.5 (7.04–11.18) <0.001

Lt. 13.05 (10.2–15.6) 9.08 (6.58–11.65) 0.002

Duration (ms) Distal Rt. 8.50 (7.92–10) 10.00 (9–11) 0.032

Lt. 8.9 (7.57–10) 9.5 (9–10.88) 0.218

Proximal Rt. 9.4 (8.3–10.15) 9.9 (9–11) 0.127

Lt. 9.25 (7.82–10.5) 10.00 (8.925–10.5) 0.632

Velocity (m/s) Rt. 40.10 (39.45–43.77) 39.60 (37.02–44.1) 0.524

Lt. 40.75 (36.87–42.3) 39.90 (37.52–41.30) 0.627

The bold values in the tables shows the data are statistically significant

Table 6 Comparison of median sensory nerve conduction study (NCS) variables between obese (n = 30) and normal weight (n = 29)
groups

Variables Median nerve Normal weight (n = 29)
Median (Q1-Q3)

Obese (n = 30)
Median (Q1-Q3)

p

Latency (ms) Rt. 2.07 (1.86–2.34) 2.01 (1.81–2.27) 0.484

Lt. 2.07 (1.92–2.28) 2.13 (1.92–2.45) 0.499

Amplitude (μV) Rt. 25.15 (19.42–34.07) 17.35 (15.2–26) <0.001

Lt. 25.15 (18.77–36.07) 18.75 (13.67–23.83) 0.009

Duration (ms) Rt. 1.65 (1.38–1.8) 1.8 (1.72–2.1) 0.003

Lt. 1.8 (1.5–1.87) 1.9 (1.8–2.1) 0.012

Velocity (m/s) Rt. 55.6 (47.75–61.92) 55.6 (51.15–60.53) 0.867

Lt. 54.05 (50.6–62.15) 53.1 (47.45–58.8) 0.211

The bold values in the tables shows the data are statistically significant
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dromically for the sural nerves, using disposable
surface electrodes with supramaximal stimulation.
Skin surface temperature was measured over the
dorsum of the hand and foot. The limb was
warmed with a hairdryer if temperature was below
32 °C. Filter settings were 2 Hz to 10 kHz and

20 Hz to 2 kHz, respectively, for motor and sensory
recordings.

i) Motor nerve conduction study variables
For motor nerve conduction study, the stimulator
with water soaked felt tips were used for surface

Table 7 Comparison of sural sensory nerve conduction study (NCS) variables between obese (n = 30) and normal weight (n = 29)
groups

Variables Sural nerve Normal weight (n = 29)
Median (Q1-Q3)

Obese (n = 30)
Median (Q1-Q3)

p

Latency (ms) Rt. 2.28 (1.98–2.68) 2.19 (1.99–2.4) 0.222

Lt. 2.46 (2.1–2.64) 2.22 (1.99–2.45) 0.089

Amplitude (μV) Rt. 22.75 (16.64–28.85) 16.55 (11.1–21.08) 0.004

Lt. 23.45 (18.81–30.35) 12.9 (11.22–17.83) <0.001

Duration (ms) Rt. 1.91 (1.8–2.15) 2.1 (1.8–2.4) 0.113

Lt. 1.90 (1.8–2.1) 2.05 (1.8–2.4) 0.108

Velocity (m/s) Rt. 48.9 (43.7–53.8) 49.25 (43.95–55.60) 0.716

Lt. 46.4 (42–52.4) 47.7 (44.78–53.90) 0.682

The bold values in the tables shows the data are statistically significant

Fig. 3 CMAP amplitudes of median nerve in non-diabetic obese and normal weight adults
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stimulation. It was placed on the skin overlying the
nerve at two or more sites (Table 1) along the
course of nerve after cleaning the site with skin
purifier. Before applying a brief pulse of current,
ground electrode was placed between the
stimulating and recording electrodes. The recording
and the reference electrodes were placed using belly
tendon montage with the recording electrode placed
over the mid belly of the respective muscles, as close
to the estimated end plate site as possible and the
reference electrode to the tendon at a minimum
distance of 3 cm. The sites of stimulation and
recording electrodes for different nerves tested are
shown in the Table 1 as described by Aminoff [5]
and Misuilis [6].
Burst of direct current with supramaximal
stimulus and the electrical pulse duration of
200 μsec were used for the stimulation of nerve
being studied. While stimulating, cathode of
stimulator was faced distally. For each stimulation
site (distal and proximal), latency, amplitude,
duration and NCV were measured from the
obtained CMAP.

Once a recording was made, the trace was stored for
later analysis and the stimulating electrode was
moved proximally to the second site. The distance
between stimulating electrodes at proximal and
distal sites was measured with a measuring tape and
was fed into the machine for nerve conduction
velocity calculation. For each stimulation site, onset
latency was measured in milliseconds from the
stimulus artefact to the first deflection of CMAP
whereas peak latency was measured at the midpoint
of the first negative peak. CMAP amplitude was
measured from baseline to the negative peak (base
to peak) and duration of CMAP was measured from
the onset to the final return of waveform to the
baseline (Fig. 1). For recording F-response or the late
response, the stimulator was placed at the distal
point of stimulation of each nerve with cathode
proximally. Maximum, minimum and mean F-wave
latencies were then measured (Fig. 2).

ii) Sensory nerve conduction study variables
For sensory nerve conduction study, orthodromic
and antidromic method of stimulation was
employed. Gain was set at 10 mV per division. The

Fig. 4 CMAP amplitudes of tibial nerve in non-diabetic obese and normal weight adults
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electrodes were essentially the same as those used
for motor NCV. Skin purifier (skin pure) was
used to clean electrode (recording) sites and to
reduce skin surface impedance. Stimulating or
recording electrodes were placed on a purely
sensory portion of the nerve. Before stimulating
the nerve, ground electrode was placed between
the stimulating and recording electrodes.
Antidromic method of stimulation was used for
sural nerve and orthodromic used for median
nerve. The sites of stimulation and recording
electrodes for different nerves are shown in the
Table 2 as described by Aminoff [5] and Misuilis
[6]. For orthodromic conduction, ring electrodes
were used to stimulate the digital nerve whereas
surface stimulating electrodes were used for
antidromic stimulation. An electrical pulse of
either 0.1 m second duration was used and most
nerve required a current in the range of 16 to
30 mA to achieve supra maximal stimulation.

Current was slowly increased from a base liner of
0 mA, usually by 3–5 mA at a time until the
recorded sensory potential was maximized. For
each nerve, latency, amplitude, and conduction
velocity of SNAP were recorded. Onset latency
was measured from stimulus to the onset of
initial negative deflection for biphasic SNAPs and
to the initial peak for triphasic SNAPs. Peak
latency was measured at the midpoint of the first
negative peak. For this study the average of
twenty responses was taken. SNAPs are usually
biphasic or triphasic potentials. Unlike in motor
studies, in sensory studies, conduction velocity
was calculated with single stimulation because
there is no transmission along neuromuscular
junctions (NMJ) or muscle fibre. The duration of
SNAP was measured firstly from the initial
negative peak to return to the baseline. SNAP
amplitude was measured form the baseline to
negative peak.

Fig. 5 CMAP durations of median nerve in non-diabetic obese and normal weight adults
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Statistical analysis
The SPSS software (v 16.02, Chicago, Illinois, USA) for
personal computer was used for the statistical analyses.
Shapiro-Wilk’s W test was applied to examine normality
in the distribution of data. Anthropometric, cardiorespi-
ratory and biochemical observations were distributed
normally, therefore, parametric student’s t-test was ap-
plied for the statistical comparison and data were
expressed in mean ± SD. Since the remaining observa-
tions had non-parametric distributions, the Mann whit-
ney ‘U’ test was applied for the statistical comparison
between study groups. The data were expressed as me-
dian (inter-quartile range) in tabulated form and p < 0.05
was the limit for a significant difference.

Results
Anthropometric and cardiorespiratory variables
Among the studied variables between the groups weight,
body mass index, pulse rate, systolic blood pressure, and

diastolic blood pressure were found to be significantly
more in obese groups shown in Table 3.

Nerve conduction study (NCS) variables
The findings for MNCS and SNCS of obese and normal
weight groups are presented in Tables 4, 5, 6 and 7.
Among the studied motor NCS variables, compound
muscle action potential (CMAP) amplitudes of right me-
dian (Table 4 and Fig. 3), right and left tibial (Table 5
and Fig. 4) nerves were significantly less in obese com-
pared to control group. Distal and proximal CMAP du-
rations for right median (Fig. 5) and tibial nerves (Fig. 6)
of both sides were significantly prolonged in obese. The
findings for sensory NCS were similar to that of motor
NCS. The sensory nerve action potential (SNAP) ampli-
tudes of median (Table 6 and Fig. 7) and sural nerves of
both sides (Table. 7 and Fig. 8) were found to be reduced
whereas SNAP durations for them (Figs. 9 and 10) were
prolonged significantly in obese than in normal weight
group.

Fig. 6 CMAP durations of tibial nerve in non-diabetic obese and normal weight adults
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Discussion
Obese persons had significantly higher body weight
and BMI than normal weight controls. While compar-
ing the nerve conduction study variables of peripheral
somatic nerves, compound muscle action potential
(CMAP) of median and tibial nerves showed lower
amplitudes (median- proximal, and tibial- distal and
proximal) in obese. Further, they had prolonged
CMAP durations for median and tibial nerves. Simi-
larly, the findings were found to be consistent with
decreased sensory nerve action potential (SNAP) am-
plitudes and increased SNAP durations for median
and sural sensory nerves.
The durations of the CMAPs and SNAPs mainly re-

flect the relative conduction rates of the impulses as
they travel along the various axons between the
stimulating and recording points [10]. In addition,
CMAPs duration is primarily the measure of synchro-
nized discharge of individual muscle fiber (i.e., the ex-
tent to which each of the individual muscle fibers fire
at the same time). If there is a significant difference

in the conduction velocity among nerve fibers, the
duration will be prolonged. This is mainly related to
the range of the conduction velocities of the large
myelinated fibers. Furthermore, it is essential to note
that latencies and conduction velocities reflect the
fastest conducting fibres but, the many other slower
conducting fibers participate in CMAP area and amp-
litude as well [11]. Increased CMAP (median and tib-
ial nerves) and SNAP (median and sural nerves)
durations in this study could be due to decreased
conduction of nerve fibers (fastest and slower) in re-
spective nerves resulting by either decreased myelin-
ation or axonal impairment (metabolic defect).
However, there were no significant decrease in onset
latencies and motor and sensory conduction velocities
in obese persons. Thus, it can be concluded that in-
creased CMAP duration could be due to alteration in
slower conducting fibres. Our finding is supported by
the study of Brismar et al.[12] and Selim et al. [13]
that some nerve fibers might be more susceptible to
damage than others, in particular, the small caliber or

Fig. 7 SNAP amplitude of median nerve in non-diabetic obese and normal weight adults
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non-myelinated fibers, while others with diameters
large enough to sustain the normal conduction veloci-
ties may be spared.
Whenever surface recording electrodes are used, am-

plitudes are semi-quantitative measures of the number
of axons conducting impulses from the stimulating to
the recording points. Amplitude (CMAP and SNAP) is a
function of the total number of fibers stimulated and the
synchronicity of the impulses [6]. There are several other
influencing factors like the relative conduction rates
along the axons, the distance between the recording
electrodes and the fibers (nerve or muscle) generating
the impulses. The CMAP amplitudes, in addition, are
indicative of the efficiency of neuromuscular transmis-
sion, and the number of muscle fibers composing the
recorded muscle that can generate action potentials
[10, 14, 15].
This study revealed lower CMAP and SNAP ampli-

tudes in obese as compared to normal weight con-
trols. This could be due to variation in the relative
conduction rates along the axons and decrease in the

number of synchronically discharged neurons. Dur-
ation and amplitude are closely related: as the dur-
ation becomes more prolonged (i.e., the response
becomes dispersed), the amplitude decreases [16].
Since, onset latencies and conduction velocities are
normal, reduction in amplitudes also supports the
probability of affecting slower and small calibre sus-
ceptible fibers. This finding is also supported by
Ralph et al. [17], reporting that the sensory and
mixed nerve amplitudes were lower in obese than in
thin subjects. Similar results were obtained by Gia-
cinta et al. [18], who found that the obese group
showed significantly decreased compound muscle ac-
tion potential amplitude of tibial and peroneal nerves
and decreased sensory action potential amplitude of
all nerves. They also aided the reason for decrement
in amplitudes could be specific metabolic alterations
[19] as in non-diabetic obese showing hyperinsuline-
mia and low insulin sensitivity that may be preclinical
reason for onset of diabetes [20]. Similarly, a study by
Robert Werner [21], noticed that obesity does not

Fig. 8 SNAP amplitude of sural nerve in non-diabetic obese and normal weight adults
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influence carpal canal pressure or the size of the me-
dian nerve at the wrist. However, there is a strong as-
sociation between slowed median nerve conduction
and increased nerve size, which suggests endoneural
edema as a metabolic mechanism; the conduction
slowing does not appear to be related to mechanical
stress. Similar results were also obtained by other re-
searchers [22–24], but they postulated the reason for
decrease in amplitude could be a thicker subcutane-
ous adipose layer since most routine NCSs are per-
formed using percutaneous stimulation and recording
technique.
In this study, onset latencies, F-wave latencies and

nerve conduction velocities did not differ significantly
between the groups. Similar to this study, Buschba-
cher found no association between ulnar NCS and
weight in ulnar nerve motor conduction to the ab-
ductor digiti minimi [25]. In contrast to this study,
Dumitru mentioned that, since more adipose tissue in
the epineurium would tend to better insulate the
axon, the nerves of more obese persons might be ex-
pected to conduct their impulses more rapidly than

in thin persons [26]. Simmons et al. [27], however,
demonstrated that overweight patients had faster
ulnar Across-elbow (AE) NCSs, and suggested that
the skin measurements overestimate the nerve dis-
tance in this population leading to a falsely fast NCS.
Similar to Simmons et al.[27], Landau et al. [28] re-
ported that increasing BMI directly correlated with
increasing ulnar motor NCV across the elbow but
not with forearm NCV. Across-elbow (AE) ulnar
motor NCS may be falsely increased in patients with
a high BMI, probably due to distance measurement
factors.
Obesity is well known risk factor for metabolic de-

rangements, like functional alterations on different ion
channels, especially on Na-K channels of nodes of Ran-
vier [21]. Thus, it may be concluded that prolonged
CMAP and SNAP durations might be due to a specific
metabolic alteration affecting mostly slower conducting
fibers and decreased amplitudes of mixed and sensory
nerves might be due to decreased axonal number stimu-
lation or actual decrease in number of axonal fibers, or
defect at NMJ in non-diabetic obese.

Fig. 9 SNAP duration of median nerve in non-diabetic obese and normal weight adults
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Conclusion
This study, although conducted in a small number of pa-
tients and lacks the relation between body fat compos-
ition and Nerve conduction, documents subclinical
peripheral nerve impairment in non-diabetic obese with
abnormal NCS parameters. Prolonged durations but
normal onset latencies and conduction velocities suggest
involvement of slow conducting fibers. Further, reduced
amplitudes might be due to decreased number of stimu-
lated fibers or/actual decrease in number of axonal fibers
or/defect at NMJ in non-diabetic obese. These changes
could be due to metabolic alterations due to obesity.
These abnormal somatic neural functions depicted by
NCS strongly suggest that non-diabetic obesity could
lead to future clinical neuropathy.
Further experimental studies based on a larger sample

of obese patients, more accurate neurophysiological (i.e.,
near-nerve recording) and neuropathological (i.e., intrae-
pidermal nerve fibers investigation) techniques, as well
as animal models of obesity including histological find-
ings, would provide stronger support for the effects of
obesity on impaired somatic neural functions.
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