Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.
CAS
PubMed
Google Scholar
Garcia OP, Long KZ, Rosado JL. Impact of micronutrient deficiencies on obesity. Nutr Rev. 2009;67:559–72.
Article
PubMed
Google Scholar
Ortega RM, Rodriguez-Rodriguez E, Aparicio A, Jimenez AI, Lopez-Sobaler AM, Gonzalez-Rodriguez LG, et al. Poor zinc status is associated with increased risk of insulin resistance in Spanish children. Br J Nutr. 2012;107:398–404.
Article
CAS
PubMed
Google Scholar
Costarelli L, Muti E, Malavolta M, Cipriano C, Giacconi R, Tesei S, et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem. 2010;21:432–7.
Article
CAS
PubMed
Google Scholar
Yoshikawa Y, Ueda E, Kojima Y, Sakurai H. The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci. 2004;75:741–51.
Article
CAS
PubMed
Google Scholar
Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr. 2004;24:151–72.
Article
CAS
PubMed
Google Scholar
Huang L, Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med. 2013;34:548–60.
Article
CAS
PubMed
Google Scholar
Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med. 2013;34:612–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smidt K, Pedersen SB, Brock B, Schmitz O, Fisker S, Bendix J, et al. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol. 2007;264:68–73.
Article
CAS
PubMed
Google Scholar
Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 2012;25:643–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579:427–32.
Article
CAS
PubMed
Google Scholar
Tominaga K, Kagata T, Johmura Y, Hishida T, Nishizuka M, Imagawa M. SLC39A14, a LZT protein, is induced in adipogenesis and transports zinc. FEBS J. 2005;272:1590–9.
Article
CAS
PubMed
Google Scholar
Beker AT, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A, et al. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One. 2012;7, e48679.
Article
Google Scholar
Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–41.
Article
CAS
PubMed
Google Scholar
Kiss Z, Crilly KS, Tomono M. Bombesin and zinc enhance the synergistic mitogenic effects of insulin and phosphocholine by a MAP kinase-dependent mechanism in Swiss 3 T3 cells. FEBS Lett. 1997;415:71–4.
Article
CAS
PubMed
Google Scholar
Aydemir TB, Sitren HS, Cousins RJ. The zinc transporter Zip14 influences c-Met phosphorylation and hepatocyte proliferation during liver regeneration in mice. Gastroenterology. 2012;142:1536–46.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103:13612–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hojyo S, Fukada T, Shimoda S, Ohashi W, Bin BH, Koseki H, et al. The zinc transporter SLC39A14/ZIP14 controls G-protein coupled receptor-mediated signaling required for systemic growth. PLoS One. 2011;6, e18059.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.
Article
CAS
PubMed
Google Scholar
Zieleniak A, Wojcik M, Wozniak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma. Arch Immunol Ther Exp (Warsz ). 2008;56:331–45.
Article
CAS
Google Scholar
Yang X, Smith U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer? Diabetologia. 2007;50:1127–39.
Article
CAS
PubMed
Google Scholar
Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.
Article
CAS
PubMed
Google Scholar
Bennetzen MF, Wellner N, Ahmed SS, Ahmed SM, Diep TA, Hansen HS, et al. Investigations of the human endocannabinoid system in two subcutaneous adipose tissue depots in lean subjects and in obese subjects before and after weight loss. Int J Obes (Lond). 2011;35:1377–84.
Article
CAS
Google Scholar
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.
Article
CAS
PubMed
Google Scholar
Volund A. Conversion of insulin units to SI units. Am J Clin Nutr. 1993;58:714–5.
CAS
PubMed
Google Scholar
Fjeldborg K, Christiansen T, Bennetzen M, Moller J, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity (Silver Spring). 2013;21:2437–43.
Article
CAS
Google Scholar
Fjeldborg K, Pedersen SB, Moller HJ, Christiansen T, Bennetzen M, Richelsen B. Human adipose tissue macrophages are enhanced but changed to an anti-inflammatory profile in obesity. J Immunol Res. 2014;2014:309548.
Article
PubMed Central
PubMed
Google Scholar
Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 1980;255:4745–50.
CAS
PubMed
Google Scholar
Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–6S.
CAS
PubMed
Google Scholar
Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA. 2006;12:1626–32.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gabrielsson BG, Olofsson LE, Sjogren A, Jernas M, Elander A, Lonn M, et al. Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes Res. 2005;13:649–52.
Article
PubMed
Google Scholar
Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.
Article
PubMed Central
PubMed
Google Scholar
Arnaud J, Touvier M, Galan P, Andriollo-Sanchez M, Ruffieux D, Roussel AM, et al. Determinants of serum zinc concentrations in a population of French middle-age subjects (SU.VI.MAX cohort). Eur J Clin Nutr. 2010;64:1057–64.
Article
CAS
PubMed
Google Scholar
Sanchez C, Lopez-Jurado M, Planells E, Llopis J, Aranda P. Assessment of iron and zinc intake and related biochemical parameters in an adult Mediterranean population from southern Spain: influence of lifestyle factors. J Nutr Biochem. 2009;20:125–31.
Article
CAS
PubMed
Google Scholar
Sayadi A, Nguyen AT, Bard FA, Bard-Chapeau EA. Zip14 expression induced by lipopolysaccharides in macrophages attenuates inflammatory response. Inflamm Res. 2013;62:133–43.
Article
CAS
PubMed
Google Scholar
Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K. Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res Notes. 2014;7:84.
Article
PubMed Central
PubMed
Google Scholar
Schmidt C, Beyersmann D. Transient peaks in zinc and metallothionein levels during differentiation of 3T3L1 cells. Arch Biochem Biophys. 1999;364:91–8.
Article
CAS
PubMed
Google Scholar
Hogstrand C, Zheng D, Feeney G, Cunningham P, Kille P. Zinc-controlled gene expression by metal-regulatory transcription factor 1 (MTF1) in a model vertebrate, the zebrafish. Biochem Soc Trans. 2008;36:1252–7.
Article
CAS
PubMed
Google Scholar
Lichten LA, Ryu MS, Guo L, Embury J, Cousins RJ. MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction. PLoS One. 2011;6, e21526.
Article
PubMed Central
CAS
PubMed
Google Scholar
Owen GI, Zelent A. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell Mol Life Sci. 2000;57:809–27.
Article
CAS
PubMed
Google Scholar
Kim TK, Park KS. Inhibitory effects of harpagoside on TNF-alpha-induced pro-inflammatory adipokine expression through PPAR-gamma activation in 3T3-L1 adipocytes. Cytokine. 2015; doi:10.1016/j.cyto.2015.05.015.
Ye J. Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun. 2008;374:405–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand. 2005;184:285–93.
Article
CAS
PubMed
Google Scholar
Sewter C, Blows F, Considine R, Vidal-Puig A, O'Rahilly S. Differential effects of adiposity on peroxisomal proliferator-activated receptor gamma1 and gamma2 messenger ribonucleic acid expression in human adipocytes. J Clin Endocrinol Metab. 2002;87:4203–7.
Article
CAS
PubMed
Google Scholar
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.
Article
PubMed
Google Scholar
Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102:6843–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fruhbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol. 2008;456:1–22.
Article
PubMed
Google Scholar
Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, et al. Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res. 2004;100:117–23.
Article
CAS
PubMed
Google Scholar
Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci. 2000;66:2143–9.
Article
CAS
PubMed
Google Scholar
Konukoglu D, Turhan MS, Ercan M, Serin O. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J Nutr Biochem. 2004;15:757–60.
Article
CAS
PubMed
Google Scholar
Voruganti VS, Cai G, Klohe DM, Jordan KC, Lane MA, Freeland-Graves JH. Short-term weight loss in overweight/obese low-income women improves plasma zinc and metabolic syndrome risk factors. J Trace Elem Med Biol. 2010;24:271–6.
Article
CAS
PubMed
Google Scholar
Ishikawa Y, Kudo H, Kagawa Y, Sakamoto S. Increased plasma levels of zinc in obese adult females on a weight-loss program based on a hypocaloric balanced diet. In Vivo. 2005;19:1035–7.
CAS
PubMed
Google Scholar
Tungtrongchitr R, Pongpaew P, Phonrat B, Tungtrongchitr A, Viroonudomphol D, Vudhivai N, et al. Serum copper, zinc, ceruloplasmin and superoxide dismutase in Thai overweight and obese. J Med Assoc Thai. 2003;86:543–51.
PubMed
Google Scholar
Ennes Dourado FF, de Sousa Lima VB, Mello Soares NR, Franciscato Cozzolino SM. do Nascimento MD. Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women. Nutr Hosp. 2011;26:650–4.
Google Scholar