DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32:S157–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thyfault JP, Krogh-Madsen R. Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J Appl Physiol. 2011;116:231–9.
Google Scholar
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Front Endocrinol. 2013;52:1–23.
Google Scholar
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.
Article
CAS
PubMed
Google Scholar
Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–61.
Article
CAS
PubMed
Google Scholar
Bull FCEWG, Biddle S, Buchner D, Ferguson R, Foster C, Fox K. Physical activity guidelines in the UK: review and recommendations. School of Sport, Exercise and Health Sciences, Loughborough University. 2010.
Sallis JF, Hovell MF, Hofstetter CR. Predictors of adoption and maintenance of vigorous physical activity in men and women. Preventative Med. 1992;21:237–51.
Article
CAS
Google Scholar
Manaf H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singapore Med J. 2013;54:581–6.
Article
PubMed
Google Scholar
Bartlett JD, Close GL, MacLaren DPM, Gregson W, Drust B, et al. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011;29:547–53.
Article
PubMed
Google Scholar
Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005;98:1985–90.
Article
PubMed
Google Scholar
Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am J Physiol. 2007;292:R1970–6.
CAS
Google Scholar
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586:151–60.
Article
CAS
PubMed
Google Scholar
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rakobowchuk M, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol. 2008;295:R236–42.
CAS
Google Scholar
Trilk JL, Singhal A, Bigelman KA, Cureton KJ. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur J Appl Physiol. 2011;111:1591–7.
Article
PubMed
Google Scholar
Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One. 2016;11(4):e0154075.
Article
PubMed
PubMed Central
Google Scholar
Babraj JA, Vollard NBJ, Keast C, Guppy FM, Cottrell G, Timmons JA. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disor. 2009;9:1–8.
Article
Google Scholar
Burgomaster KA, Heigenhauser GJF, Gibala MJ. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol. 2006;100:2041–7.
Article
PubMed
Google Scholar
Metcalfe RS, Babraj JA, Faweekner SG, Vollard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high intensity interval training. Eur J Appl Physiol. 2011;112:2767–75.
Article
PubMed
Google Scholar
Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, Krustrup P. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc. 2010;42:1951–8.
Article
PubMed
Google Scholar
Richards JC, Johnson TK, Kuzma JN, Lonac MC, Schweder MM, Voyles WF, Bell C. Short term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to beta-adrenergic stimulation. J Physiol. 2010;588:2961–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shepherd SO, Cocks M, Tipton KD, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol. 2013;5913:657–75.
Article
Google Scholar
Whyte LJ, Gill JMR, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59:1421–8.
Article
CAS
PubMed
Google Scholar
Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, Wagenmakers AJ. Sprint interval and moderate‐intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD (P) Hoxidase protein ratio in obese men. J Physiol. 2015.
Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldrum HL, Gilligan LJ, Koch LG, Britton SL, Najjar AM, WislØff U. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res. 2009;81:723–32.
Article
CAS
PubMed
Google Scholar
Little JP, Gillen JB, Percival M, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111:1554–60.
Article
CAS
PubMed
Google Scholar
Wisløff U, Støylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients a randomized study. Circulation. 2007;115:3086–94.
Article
PubMed
Google Scholar
ACSM. Exercise prescription for patients with cardiovascular and cerebrovascular disease. In: Pescatello LS, Arena R, Riebe D, et al., editors. ACSM’s Guidlines for Exercise Testing and Prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 236–59.
Google Scholar
Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2–5.
Article
PubMed
Google Scholar
Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA. Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Fail. 2013;1:514–22.
Article
PubMed
Google Scholar
Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med. 1986;3:346–56.
Article
CAS
PubMed
Google Scholar
Bertin E, Marcus C, Ruiz JC, Eschard JP, Leutenegger M. Measurement of visceral adipose tissue by DXA combined with anthropometry in obese humans. Int J Obes. 2000;24:263–70.
Article
CAS
Google Scholar
Paradisi G, Smith L, Burtner C, Leaning R, Garvey WT, Hook G, et al. Dual energy X-ray absorptiometry assessment of fat mass distribution and its association with the insulin resistance syndrome. Diabetes Care. 1999;22:1310–7.
Article
CAS
PubMed
Google Scholar
Van MD, Mayclin PL. Body composition assessment: dual-energy X-ray absorptiometry (DEXA) compared to reference methods. Eur J Clin Nutr. 1992;46:125–30.
Google Scholar
Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–70.
Article
CAS
PubMed
Google Scholar
Gray SR, Robinson M, Nimmo MA. Response of plasma IL-6 and its soluble receptors during submaximal exercise to fatigue in sedentary middle-aged men. Cell Stress Chaperones. 2008;13:247–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leggate M, Nowell MA, Jones SA, Nimmo MA. The response of interleukin-6 and soluble interleukin-6 receptor isoforms following intermittent high intensity and continuous moderate intensity cycling. Cell Stress Chaperones. 2010;15:827–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamopoulos S, Parissis J, Karatzas D, et al. Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fasligand system in patients with chronic heart failure. J Am Coll Cardiol. 2002;39:653–63.
Article
CAS
PubMed
Google Scholar
Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. NMCD. 2010;20:608–17.
CAS
PubMed
Google Scholar
Leggate M, Carter WG, Evans MJ, Vennard RA, Sribala-Sundaram S, Nimmo MA. Determination of inflammatory & prominent proteomic changes in plasma & adipose tissue after high intensity intermittent training in overweight & obese males. J Appl Physiol. 2012;112:1353–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson D, Markovitch D, Betts JA, Mazzatti D, Turner J, Tyrrell RM. Time course of changes in inflammatory markers during a 6-mo exercise intervention in sedentary middle-aged men: a randomized-controlled trial. J Appl Physiol. 2010;108:769–79.
Article
CAS
PubMed
Google Scholar
Zoppini G, Targher G, Zamboni C, Venturi C, Cacciatori V, Moghetti P, Muggeo M. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2006;16:543–9.
Article
CAS
PubMed
Google Scholar
Wang J, et al. Effect of exercise training intensity on murine T-regulatory cells and vaccination response. Scand J Med Sci Sports. 2012;22(5):643–52.
Article
CAS
PubMed
Google Scholar
Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:293–301.
Article
PubMed
Google Scholar
Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–56.
Article
CAS
PubMed
Google Scholar
Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J. A short training programme for the rapid improvement in both aerobic and anaerobic metabolism. Eur J Appl Physiol. 2000;82:480–6.
Article
CAS
PubMed
Google Scholar
Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol. 2007;102:1439–47.
Article
CAS
PubMed
Google Scholar
Hautala AJ, Kiviniemi AM, Makikallio TH, Kinnunen H, Nissila S, Huikuri HV, Tulppo MP. Individual differences in in the responses to endurance and resistance training. Eur J Appl Physiol. 2006;96:535–54.
Article
PubMed
Google Scholar
Timmons JA. Variability in training-induced skeletal muscle adaptation. J Appl Physiol. 2011;110:846–53.
Article
PubMed
Google Scholar
Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol. 2000;81:188–96.
Article
CAS
PubMed
Google Scholar
Buchheit M, Abbiss CR, Peiffer JJ, Laursen PB. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;112:767–79.
Article
CAS
PubMed
Google Scholar
Tjønna AE, Lee SJ, Rognmo Ø, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome a pilot study. Circulation. 2008;118:346–54.
Article
PubMed
PubMed Central
Google Scholar
Heydari M, Freund J, Boutcher SH. The effect of high intensity intermittent exercise on body composition of overweight young males. J Obes. 2012;2012:480467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornish AK, Broadbent S, Cheema BS. Interval training for patients with coronary artery disease: a systematic review. Eur J Appl Physiol. 2011;111(4):579–589.
Gillen JB, Percival ME, Ludzki A, Tarnapolski MA, Gibala MJ. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity. 2013;21:2249–55.
Article
CAS
PubMed
Google Scholar
Moholdt TT, Amundsen BH, Rustad LA, Wahba A, Løvø KT, Gullikstad LR, Bye A, Skogvoll E, Wisløff U, Slørdahl SA. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J. 2009;158:1031–7.
Article
PubMed
Google Scholar
Wallman K, Plant LA, Rakimov B, Maiorana AJ. The effects of two modes of exercise on aerobic fitness and fat mass in an overweight population. Res Sports Med. 2009;17:156–70.
Article
PubMed
Google Scholar
Schjerve I, Tyldum G, Tjønna A, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci. 2008;115:283–93.
Article
PubMed
Google Scholar
Larsen S, Danielsen JH, Søndergård SD, Søgaard D, Vigelsoe A, Dybboe R, Helge JW. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J of Med Sci Sports. 2015;25:e59–69.
Article
CAS
Google Scholar
Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53–73.
Article
PubMed
Google Scholar
Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119:812–9.
Article
CAS
PubMed
Google Scholar
Hazell TJ, Olver TD, Hamilton CD, Lemon PWR. Two min of sprint interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab. 2012;22:276–83.
Article
PubMed
Google Scholar
Kelly BM, King JA, Goerlach J, Nimmo MA. The impact of high-intensity intermittent exercise on resting metabolic rate in healthy males. Eur J Appl Physiol. 2013;113:3039–47.
Article
CAS
PubMed
Google Scholar
Rognmo Ø, Hetland E, Helgerud J, Hoff J, Slørdahl SA. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004;11:216–22.
Article
PubMed
Google Scholar
Warburton DE, McKenzie DC, Haykowsky MJ, Taylor MJ, Shoemaker A, Ignaszewski AP, Chan SY. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005;95:1080–4.
Kessler HS, Sission SB, Short KR. The potential for high intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42:489–509.
Article
PubMed
Google Scholar