World Health Organization, Obesity and overweight, Fact sheet N° 311, updated August 2014.
Kim GW, Lin JE, Blomain ES, Waldman SA. Antiobesity Pharmacotherapy: New Drugs and Emerging Targets. Clin Pharmacol Ther. 2014;95(1):53–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun JW. Possible anti-obesity therapeutics from nature – A review. Phytochemistry. 2010;71:1625–41.
Article
CAS
PubMed
Google Scholar
Cheung BMY, Cheung TT, Samaranayake NR. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013;4(4):171–81.
Article
PubMed
PubMed Central
Google Scholar
Chaput JP, St-Pierre S, Tremblay A. Currently available drugs for the treatment of obesity: sibutramine and orlistat. Mini Rev Med Chem. 2007;7:3–10.
Article
CAS
PubMed
Google Scholar
EMA, Refusal of the marketing authorisation for Qsiva (phentermine/topiramate) EMA/109958/2013, EMEA/H/C/002350, 21 February 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002350/WC500139215.pdf.
Froese WM, Ludlow ME. Efficacy of Over-the-Counter (OTC) Medical Device Products as a Tool in Clinical Weight Management. Food Nutr Sci. 2014;5:1637–43.
Article
Google Scholar
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56:290–9.
Article
CAS
PubMed
Google Scholar
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.
Article
CAS
PubMed
Google Scholar
Rodriguez MS, Albertengo LE. Interaction between chitosan and oil under stomach and duodenal digestive chemical conditions. Biosci Biotechnol Biochem. 2005;69:2057–62.
Article
CAS
PubMed
Google Scholar
Helgason T, Weiss J, McClements DJ, Gislason J, Einarsson JM, Thormodsson FR, Kristbergsson K. Examination of the interaction of chitosan and oil-in-water emulsions under conditions simulating the digestive system using confocal microscopy. J Aquat Food Prod Technol. 2008;17(3):216–33.
Article
CAS
Google Scholar
Han LK, Kimura Y, Okuda H. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. Int J Obes. 1999;23:174–9.
Article
CAS
Google Scholar
Dimzon IKD, Ebert J, Knepper TP. The interaction of chitosan and olive oil: effect of degree of deacetylation and degree of polymerization. Carbohydr Polym. 2013;92:564–70.
Article
CAS
PubMed
Google Scholar
Dimzon IK, Knepper TP. Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares. Int J Biol Macromol. 2015;72:939–45.
Article
CAS
PubMed
Google Scholar
Jull AB, Ni Mhurchu C, Bennett DA, Dunshea-Mooij CA, Rodgers A. Chitosan for overweight or obesity. Cochrane Database Syst Rev. 2008;16(3):CD003892. doi:10.1002/14651858.CD003892.pub3.
Google Scholar
Gades MD, Stern JS. Chitosan Supplementation and Fecal Fat Excretion in Men. Obes Res. 2003;11(5):683–8.
Article
CAS
PubMed
Google Scholar
Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG. Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J Am Coll Nutr. 2008;27(1):22–30.
Article
CAS
PubMed
Google Scholar
Pittler MH, Abbot NC, Harkness EF, Ernst E. Randomized, double-blind trial of chitosan for body weight reduction. Eur J Clin Nutr. 1999;53(5):379–81.
Article
CAS
PubMed
Google Scholar
Mhurchu CN, Poppitt SD, McGill AT, Leahy FE, Bennett DA, Lin RB, Ormrod D, Ward L, Strik C, Rodgers A. The effect of the dietary supplement, Chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes. 2004;28:1149–56.
Article
CAS
Google Scholar
Kaats GR, Michalek JE, Preuss HG. Evaluating efficacy of a chitosan product using a double-blinded, placebo controlled protocol. J Am Coll Nutr. 2006;25(5):389–94.
Article
PubMed
Google Scholar
Cornelli U, Belcaro G, Cesarone MR, Cornelli M. Use of polyglucosamine and physical activity to reduce body weight and dyslipidemia in moderately overweight subjects. Minerva Cardioangiol. 2008;56(5):71–8.
CAS
PubMed
Google Scholar
Egras AM, Hamilton WR, Lenz TL and Monaghan MS: An Evidence-Based Review of Fat Modifying Supplemental Weight Loss Products. J Obesity. 2011: 297–315, doi:10.1155/2011/297315.
Walsh AM, Sweeney T, Bahar B, O’Doherty JV. Multi-Functional Roles of Chitosan as a Potential Protective Agent against Obesity. Plos One. 2013;8(1):e53828. doi:10.1371/journal.pone.0053828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pokhis K, Bitterlich N, Cornelli U, Cassano G. Efficacy of polyglucosamine for weight loss—confirmed in a randomized double-blind, placebo-controlled clinical investigation. BMC Obesity. 2015;2:25.
Article
PubMed
PubMed Central
Google Scholar
Karadeniz F, Kim SK. Antidiabetic Activities of Chitosan and Its Derivatives: A Mini Review. Adv Food Nutr Res. 2014;73:33–44.
Article
PubMed
Google Scholar
Kokatnur MG, Oalmann MC, Johnson WD, Malcom GT, Strong JP. Fatty acid composition of human adipose tissue from two anatomical sites in a biracial community. Am J Clin Nutr. 1979;32(11):2198–205.
CAS
PubMed
Google Scholar
Spurlock ME, Gabler NK. The Development of Porcine Models of Obesity and the Metabolic Syndrome. J Nutr. 2008;138:397–402.
CAS
PubMed
Google Scholar
Christoffersen B, Golozoubova V, Pacini G, Svendsen O, Raun K. The young göttingen minipig as a model of childhood and adolescent obesity: Influence of diet and gender. Obesity. 2013;21(1):149–58.
Article
CAS
PubMed
Google Scholar
Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Meth. 2010;62:196–220.
Article
CAS
Google Scholar
Guilloteau P, Zabielski R, Hammon HM, Metges CC. Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev. 2010;23:4–22.
Article
PubMed
Google Scholar
Patterson JK, Lei XG, Miller DD. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med. 2008;233:651–64.
Article
CAS
Google Scholar
Wilfart A, Montagne L, Simmins H, Noblet J, Van Milgen J. Effect of fiber content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest Sci. 2007;109:27–9.
Article
Google Scholar
Van der Laan JW, Brightwell J, McAnulty P, Ratky J, Stark C. Under the auspices of the Steering Group of the RETHINK Project. J Pharmacol Toxicol Meth. 2010;62:184–95.
Article
Google Scholar
Stricker D. BrightStat.com: free statistics online. Comput. Methods Programs Biomed. 2008;92:135–43.
Article
Google Scholar
Pérez LY, Menéndez R, Más R, González RM. Plasma levels, tissue distribution and excretion of radioactivity after single-dose administration of (3H)-Oleic acid added to D-004, a lipid extract of the fruit of Roystonea regia in rats. Curr Ther Res. 2006;67(6):407–19.
Google Scholar
Beierwaltes WH, Ice RD, Shaw MJ, Ryo UY. Myocardial uptake of labelled oleic and linoleic acids. J Nucl Med. 1975;16:842–5.
CAS
PubMed
Google Scholar
Pedersen NT. Estimation of assimilation of simultaneously ingested 14C-triolein and 3H-oleic acid as a test of pancreatic digestive function. Scand J Gastroenterol. 1984;19:161–6.
Google Scholar
Liang H, Tantiwong P, Sriwijitkamol A, Shanmugasundaram K, Mohan S, Espinoza S, DeFronzo RA, Dubé JJ, Musi N. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol. 2013;591(11):2897–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boden G. Obesity and Free Fatty Acids (FFA). Endocrinol Metab Clin North Am. 2008;37(3):635–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mani V, Harris AJ, Keating AF, Weber TE, Dekers JCM, Gabler NK. Intestinal integrity, endotoxin transport and detoxification in pigs divergently selected for residual feed intake. J Anim Sci. 2013;91(5):2141–50.
Article
CAS
PubMed
Google Scholar
Piya MK, Harte AL, McTernan PG. Metbaoic endotoxaemia; is it more than just a gut feeling? (review). Curr Opin Lipidol. 2013;24(1):78–85.
Article
CAS
PubMed
Google Scholar
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes. 2008;57:1470–81.
Article
CAS
PubMed
Google Scholar
Zaved Waise TM, Toshinai K, Naznin F, NamKoong C, Abu Saleh Md Moin A, Sakoda H, Nakazato M. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun. 2015;464:1157–62.
Article
Google Scholar