World Health Organization. Report of the commission on ending childhood obesity. Geneva: World Health Organization; 2016.
Google Scholar
UNICEF, WHO, World Bank. Levels and trends in child malnutrition: UNICEF-WHO-World Bank joint child malnutrition estimates. New York: UNICEF; Geneva: WHO; Washington DC: World Bank; 2015.
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.
Article
PubMed
PubMed Central
Google Scholar
World Health Organisation. Fact sheet No 311, 2013. http://www.wpro.who.int/mediacentre/factsheets/obesity/en/. Accessed 1 Oct 2016.
National high blood pressure education programme (NHBPEP) working group on high blood pressure in children and adolescents. The fourth report on the diagnosis, evaluation and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;144:555–76.
Article
Google Scholar
World Health Organisation. Preventing chronic diseases; a vital investment, WHO global report. Geneva: World Health Organisation; 2005.
Google Scholar
McNiece NL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJ. Prevalence of hypertension and prehypertension among adolescents. J Pediatr. 2007;150:640–4.
Article
PubMed
Google Scholar
Ashwell M, Gibson S. Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. Br Med J. 2016;6:159–63.
Google Scholar
Brambilla P, Bedogni G, Heo M, Pietrobelli A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int J Obes. 2013;37(7):943–52.
Article
CAS
Google Scholar
Savva SC, Lamnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes. 2013;6:403–19.
Article
PubMed
PubMed Central
Google Scholar
Hashemipour M, Soghrati M, Boyskahmadi M, Mirmoghatadael P, Kelishadi R. Association of anthropometric indices and cardio-metabolic risk factors among obese children. ARYA Atheroscler. 2010;5:9–14.
Google Scholar
Khoury M, Manlhiot C, McCrindle BW. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J Am Coll Cardiol. 2013;62:742–51.
Article
PubMed
Google Scholar
Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303–7.
Article
PubMed
Google Scholar
Rodea-Montero ER, Evia-Viscarra ML, Apolinar-Jimenez E. Waist-to-height ratio is a better anthropometric index than waist circumference and BMI in predicting metabolic syndrome among obese Mexican adolescents. Int J Endocrinol. 2014;2014:195–207.
Article
Google Scholar
Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet and Nutrition Survey of adults aged 19–64 years. Obes Facts. 2009;2:97–103.
Article
PubMed
Google Scholar
Obidike EO. Anthropometry and blood pressure in Nigerian children. Orient J Med. 2007;19:49–53.
Google Scholar
Abiodun AG, Egwu MO, Adedoyin RA. Anthropometric indices associated with variation in cardiovascular parameters among primary school pupils in Ile-Ife. Int J Hypertens. 2011;5:186–94.
Google Scholar
Uwaezuoke SN, Okoli CV, Ubesie AC, Ikefuna AN. Primary hypertension among a population of Nigerian secondary school adolescents: prevalence and correlation with anthropometric indices: a cross-sectional study. Niger J Clin Pract. 2016;19:649–54.
Article
PubMed
CAS
Google Scholar
Akor F, Okolo SN, Okolo AA. Blood pressure and anthropometric measurement in healthy primary school entrants in Jos, Nigeria. S Afr J Child Health. 2010;4:42–5.
Google Scholar
Senbanjo IO, Oshikoya KA. Obesity and blood pressure levels of adolescents in Abeokuta, Nigeria. Cardiovasc J Afr. 2012;23:260–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nambiar S, Hughes I, Davies PSW. Developing waist to height ratio cut-offs to define overweight and obesity in children and adolescent. Public Health Nutr. 2010;13:1566–74.
Article
PubMed
Google Scholar
Srinivasan SR, Wang R, Chen W, Wei CY, Xu J, Berenson GS. Utility of waist to height ratio in detecting central obesity and related adverse cardiovascular risk profile among normal weight children and younger adults (from the Bogalusa heart study). Am J Cardiol. 2009;104:721–4.
Article
PubMed
Google Scholar
Kubar VM, Leone C, Damiani D. Is waist-to-height ratio a useful indicator of cardio-metabolic risk in 6-10years-old children? BMC Paediatr. 2013;13:91–6.
Article
CAS
Google Scholar
Federal Republic of Nigeria. Legal notice on publication of 2006 census final results. Fed Rep Niger Off Gaz. 2009;96:B28.
Google Scholar
Ujunwa FA, Ikefuna AN, Nwokocha ARC, Chinawa JM. Hypertension and prehypertension among adolescents in secondary schools in Enugu, south-east Nigeria. Ital J Pediatr. 2013;39:70–6.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. Physical status: the use and interpretation of anthropometry: a report of a WHO expert committee series No 854. Geneva: WHO; 1995. http://www.who.int/childgrowth/publications/physical_status/en/index.html. Accessed 18 Mar 2018
Google Scholar
Browning LM, Hseih SD, Ashwell M. A systematic review of waist to height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev. 2010;23:247–69.
Article
PubMed
Google Scholar
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA. 2003;289:2560–72.
Article
PubMed
CAS
Google Scholar
Fernández JR, Redden DT, Pietrobelli A, Allison DB. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr. 2004;145:439–44.
Article
PubMed
Google Scholar
Onis MD, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.
Article
PubMed
PubMed Central
Google Scholar
Delong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristics curve: a nonparametric approach. Biometrics. 1988;44:837–45.
Article
PubMed
CAS
Google Scholar
Oyewole OO, Oritogun KS. Relationship between anthropometric parameters and blood pressure in Sagamu adolescents, Ogun state, south-west Nigeria. Int J Biomed Hlth Sci. 2009;5:191–8.
Google Scholar
Kahn HS, Imperatore G, Cheng YJ. A population-based comparison of BMI percentiles and waist-to-height ratio for identifying cardiovascular risk in youth. J Pediatr. 2005;146:482–8.
Article
PubMed
Google Scholar
Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61:646–53.
Article
PubMed
Google Scholar
Wagner DR, Heyward VH. Measures of body composition in blacks and whites: a comparative review. Am J Clin Nutr. 2000;71:1392–402.
Article
PubMed
CAS
Google Scholar
National Population Commission, ICF International. Nigeria Demographic and Health Survey 2013. Abuja and Rockville: NPC and ICF International; 2014.
Google Scholar
Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J. 2000;320:1240–3.
Article
CAS
Google Scholar
Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev. 2004;5(4):197–216.
Article
PubMed
CAS
Google Scholar
Omisore AG, Omisore B, Abioye-Kuteyi EA, Bello IS, Olowookere SA. In-school adolescents’ weight status and blood pressure profile in South-western Nigeria: urban-rural comparison. BMC Obes. 2018;5(1):2.
Article
PubMed
PubMed Central
Google Scholar
Savva SC, Tornaritus M, Savva ME, Kourides Y, Panagi A, Silikiotou N, et al. Waist circumference and waist to height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord. 2000;24:1453–8.
Article
PubMed
CAS
Google Scholar
Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminator of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol. 2008;61:646–53.
Article
PubMed
Google Scholar
Amato MC, Giordano C. Visceral adiposity indicator: an indicator of adipose tissue dysfunction. Int J Endocrinol. 2014;73:27–32.
Google Scholar
Ejike CE. Obesity and hypertension in children and adolescents: developing new tools for the diagnosis of two global pediatric challenges. J Med Sci. 2013;13:151–9.
Article
Google Scholar
Bao W, Threefoot SA, Sunivasan SR, Berenson GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood. The Bogalusa Heart Study. Am J Hypertens. 1995;8:657–65.
Article
PubMed
CAS
Google Scholar
Fuentes RM, Notkola IL, Shemeikka S, Tuomilelito J, Nissinen A. Tracking of systolic blood pressure during childhood; a 15-year follow-up population family study in eastern Finland. J Hypertens. 2002;20:195–202.
Article
PubMed
CAS
Google Scholar
Olusanya O, Okpere EE, Ezimokhai M. The importance of socioeconomic class in voluntary fertility in developing countries. West Afr Med J. 1985;4:205–7.
Google Scholar
Cromer B. Adolescent physical and social development. In: Kliegman RM, Stanton B, Geme JS, Schor NF, Behrman RE, editors. Nelson Textbook of Pediatrics. 19th ed. Philadelphia: Elsevier Health Sciences; 2015. p. 649–54.