Zubair A, Leeson S. Compensatory growth in the broiler chicken: a review. World’s Poultry Science Journal. 1996;52:189–201.
Article
Google Scholar
Frayn K. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 2002;45:1201–10.
Article
CAS
PubMed
Google Scholar
Pascot A, Despres J, Lemieux I, Bergeron J, Nadeau A, Prud’Homme D, Tremblay A, Lemieux S. Contribution of visceral obesity to the deterioration of the metabolic risk profile in men with impaired glucose tolerance. Diabetologia. 2000;43:1126–35.
Article
CAS
PubMed
Google Scholar
Joe AW, Yi L, Even Y, Vogl AW, Rossi F. Depot‐specific differences in adipogenic progenitor abundance and proliferative response to high‐Fat diet. Stem Cells. 2009;27:2563–70.
Article
CAS
PubMed
Google Scholar
Nelson LA, Gilbert ER, Cline MA. Effects of dietary macronutrient composition on exogenous Neuropeptide Y’s stimulation of food intake in chicks. Neurosci Lett. 2015;591:171–5.
Article
CAS
PubMed
Google Scholar
Bai S, Wang G, Zhang W, Zhang S, Rice BB, Cline MA, Gilbert ER. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch. Comp Biochem Physiol A Mol Integr Physiol. 2015;189:115–23.
Article
CAS
PubMed
Google Scholar
Zhang S, McMillan RP, Hulver MW, Siegel PB, Sumners LH, Zhang W, Cline MA, Gilbert ER. Chickens from lines selected for high and low body weight show differences in fatty acid oxidation efficiency and metabolic flexibility in skeletal muscle and white adipose tissue. Int J Obes (Lond). 2014;38:1374–82.
Article
CAS
Google Scholar
Yi J, Delp MS, Gilbert ER, Siegel PB, Cline MA. Anorexia is associated with stress-dependent orexigenic responses to exogenous Neuropeptide Y. J Neuroendocrinol. 2016;28.
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.
Article
CAS
PubMed
Google Scholar
Noy Y, Sklan D. Nutrient use in chicks during the first week posthatch. Poult Sci. 2002;81:391–9.
Article
CAS
PubMed
Google Scholar
Alleman F, Michel J, Chagneau AM, Leclercq B. The effects of dietary protein independent of essential amino acids on growth and body composition in genetically lean and fat chickens. Br Poult Sci. 2000;41:214–8.
Article
CAS
PubMed
Google Scholar
Jlali M, Gigaud V, Metayer-Coustard S, Sellier N, Tesseraud S, Le Bihan-Duval E, Berri C. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes. J Anim Sci. 2012;90:447–55.
Article
CAS
PubMed
Google Scholar
Lacroix M, Gaudichon C, Martin A, Morens C, Mathé V, Tomé D, Huneau J-F. A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am J Phys Regul Integr Comp Phys. 2004;287:R934–42.
CAS
Google Scholar
Jean C, Rome S, Mathé V, Huneau J-F, Aattouri N, Fromentin G, Achagiotis CL, Tomé D. Metabolic evidence for adaptation to a high protein diet in rats. J Nutr. 2001;131:91–8.
CAS
PubMed
Google Scholar
Bensaı̈d A, Tomé D, Gietzen D, Even P, Morens C, Gausseres N, Fromentin G. Protein is more potent than carbohydrate for reducing appetite in rats. Physiol Behav. 2002;75:577–82.
Article
PubMed
Google Scholar
Vandewater K, Vickers Z. Higher-protein foods produce greater sensory-specific satiety. Physiol Behav. 1996;59:579–83.
Article
CAS
PubMed
Google Scholar
Wang G, Tachibana T, Gilbert ER, Cline MA. Exogenous prolactin-releasing peptide’s orexigenic effect is associated with hypothalamic Neuropeptide Y in chicks. Neuropeptides. 2015;54:79–83.
Article
CAS
PubMed
Google Scholar
McConn BR, Matias J, Wang G, Cline MA, Gilbert ER. Dietary macronutrient composition affects hypothalamic appetite regulation in chicks. Nutri Neurosci. 2016;1–10.
Gondret F, Ferré P, Dugail I. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J Lipid Res. 2001;42:106–13.
CAS
PubMed
Google Scholar
Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc Natl Acad Sci. 1998;95:4333–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.
Article
CAS
PubMed
Google Scholar
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7:489–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Wang H, Sun Y, Li H, Wang N. Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochim Biophys Sin Shanghai. 2013;45:280–8.
Article
CAS
PubMed
Google Scholar
Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74:761–811.
CAS
PubMed
Google Scholar
Ji B, Ernest B, Gooding JR, Das S, Saxton AM, Simon J, Dupont J, Metayer-Coustard S, Campagna SR, Voy BH. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics. 2012;13:441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saneyasu T, Shiragaki M, Nakanishi K, Kamisoyama H, Honda K. Effects of short term fasting on the expression of genes involved in lipid metabolism in chicks. Comp Biochem Physiol B Biochem Mol Biol. 2013;165:114–8.
Article
CAS
PubMed
Google Scholar
Palou M, Sánchez J, Priego T, Rodríguez AM, Picó C, Palou A. Regional differences in the expression of genes involved in lipid metabolism in adipose tissue in response to short-and medium-term fasting and refeeding. J Nutr Biochem. 2010;21:23–33.
Article
CAS
PubMed
Google Scholar
Palou M, Priego T, Sanchez J, Villegas E, Rodriguez A, Palou A, Picó C. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch - Eur J Physiol. 2008;456:825–36.
Article
CAS
Google Scholar
Wu Z, Xie Y, Morrison RF, Bucher N, Farmer SR. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3 T3 fibroblasts into adipocytes. J Clin Investig. 1998;101:22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gosmain Y, Dif N, Berbe V, Loizon E, Rieusset J, Vidal H, Lefai E. Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues. J Lipid Res. 2005;46:697–705.
Article
CAS
PubMed
Google Scholar
Osborne TF. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem. 2000;275:32379–82.
Article
CAS
PubMed
Google Scholar
Leveille GA, Romsos DR, Yeh Y-Y, O’Hea EK. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci. 1975;54:1075–93.
Article
CAS
PubMed
Google Scholar
Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.
Article
CAS
PubMed
Google Scholar
Poirier S, Samami S, Mamarbachi M, Demers A, Chang TY, Vance DE, Hatch GM, Mayer G. The epigenetic drug 5-azacytidine interferes with cholesterol and lipid metabolism. J Biol Chem. 2014;289:18736–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13:803–11.
Article
CAS
PubMed
Google Scholar
Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, Yulyaningsih E, Zhang H, Lau J, Sainsbury A, Herzog H. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring). 2011;19:2137–48.
Article
CAS
Google Scholar
Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281:40236–41.
Article
CAS
PubMed
Google Scholar
Sato K, Seol HS, Kamada T. Tissue distribution of lipase genes related to triglyceride metabolism in laying hens (gallus gallus). Comp Biochem Physiol B Biochem Mol Biol. 2010;155:62–6.
Article
PubMed
Google Scholar
Granneman JG, Moore H-PH, Krishnamoorthy R, Rathod M. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (atgl). J Biol Chem. 2009;284:34538–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonough PM, Maciejewski-Lenoir D, Hartig SM, Hanna RA, Whittaker R, Heisel A, Nicoll JB, Buehrer BM, Christensen K, Mancini MG. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One. 2013;8:e55511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li P, Liu Y, Zhang Y, Long M, Guo Y, Wang Z, Li X, Zhang C, He J, Liu G. Effect of non-esterified fatty acids on fatty acid metabolism-related genes in calf hepatocytes cultured in vitro. Cell Physiol Biochem. 2013;32:1509–16.
Article
CAS
PubMed
Google Scholar
Nguyen NL, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2014;306:R375–386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geerling JJ, Boon MR, Kooijman S, Parlevliet ET, Havekes LM, Romijn JA, Meurs IM, Rensen PC. Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res. 2014;55:180–9.
Article
CAS
PubMed
PubMed Central
Google Scholar